NetCDF OPeNDAP Integration Project Kickoff Meeting Notes

11/02/07

Attendees: John Caron, Ethan Davis, James Gallagher, Ed Hartnett, Russ Rew

Agenda

1. Data Model and DAP Evolution 

2. Software Components and Architecture 

3. Deliverables and Schedule 

4. Licensing 

5. Testing, NMI 

6. Staffing 


Data Model and DAP Evolution

CDM Data Model issues:

· Groups

· treat these like a namespace 

· CDM limits these to hierarchies 

· DAP 4 will add this

· Enumerations 

· DAP plans to implement these using Ints and an associated attribute or set of attributes - the exact design is TBD 

· For CDM, it will be important for the DAP to be able to share enumeration "types" across variables. That is, multiple variables might use the same enumeration.

· HDF5 includes type definitions which are part of the file even though those definitions might not actually be used by any variable currently in the file (they might be added later).

· DAP will encode these in the DDX global attributes - a savvy client will understand them; most clients won't but don't care. 

· For CDM, it will be important for the DAP to be able to share types across variables. That is, multiple variables might use the same type. 

· List 

· The List data type might be used to represent vlens to avoid the issue with encoding them as Sequences that are incomplete in the sense that a Sequence is a data type that has certain operations and vlens do not support the selection operations.

· Another option is to keep with the current representation of vlen as Sequence and include an attribute which tells clients they cannot use relational operators. 

· Another issue is whether nested Sequences/Lists have to be read when the parent is read, or if the data reading could be deferred.

· Opaque 

· Proposed for DAP4 

· Used to encode things like JPEG 

· From John's POV, an opaque type thats really a byte(*), meaning a variable length array of bytes seems useful. Opaque as a synonym for byte seems not useful.

· Unicode 

· nc4/CDM: Strings are UTF-8 encoded Unicode (the value of a string is UTF-8 ...) 

· UTF-8 in a URL (Unicode --> UTF-8 --> HTTP escaping using %<hex-digit><hex-digit>) 

· Also use UTF-8 for variable, dimension, attribute, group, and type names (a.k.a. "Object names").

· Question: C++ support for UTF-8 encoding 

· Char vs. String 

· String is Unicode, variable length. 

· char is really 1-byte ASCII, fixed length. 

· Simplest thing is for DAP4 to declare Strings as UTF-8 encoded Unicode. 

· Netcdf server handling of char 

· Old Netcdf server maps each char to a String. This is a bigger problem than it sounds. Do we need to support this in the clients?

· Should map an n dim char array to a (n-1) dim String array. A special "strlen" attribute indicates its really a Char type.

· 64-Bit Integers are needed 

· signed vs unsigned Byte 

· doesnt matter for data, but problem for attribute: byte _FillValue = -1; is common netcdf case; what should DAP look like?

· Dimensions 

· CDM has shared Dimension objects, where Dimension = (name, length). A Variable's Dimension must be in the same group or a parent group. 

· DAP has Grids which are similar, but not as general. 

· The simplest thing is for DAP4 to add a Dimension object. 

· NC4 needs to add anonymous (aka local, aka private) Dimensions. These have length, but no name, and are local to the Variable. 


Software Components and Architecture

Give Unidata write access to the Ocapi in SVN.

DAP2: protocol standardized by NASA Earth Systems standards working group, and under consideration for standardization by IOOS-DMAC.
DAP3.2: current version of protocol, has additions for XML responses, additional variants on how Sequences are handled, web services additions.
DAP4: future protocol that will include Groups, and maybe 64-bit integers, Unicode strings, ...

libdap++: format neutral server and client components that are the base of other format-specific OPeNDAP components.

libnc-dap: Currently the netCDF-3 client library is a sort of clone of the netCDF-3.6.2 distribution that calls Unidata's netCDF (after name changes) for local files and calls the NCConnect class from libdap++ for remote files.  It uses  C++ inheritance to handle translation and C++ linkage to get things initialized correctly, including strings, exceptions, and IOStreams.  libnc-dap is built on libdap++ and includes client and server toolkits for DAP2 and DAP3.2.  libnc-dap is widely used, included in Fedora core extras.

Ocapi: a pure C client-only substitute for libdap++ that supports all of DAP2.  An advantage of ocapi over libdap++ is that it can be loaded at run-time from applications in C, Perl, python, and MATLAB, which is not possible with libdap++/libnc-dap because of the requirement for C++ linkage and initialization.  Ocapi is not currently used much and probably has memory leaks and memory access bugs that need to be fixed.  IDL may be the only other client, and even IDL does not make heavy use of it.  There is currently no shared code between libdap++ and ocapi, though they do share the grammar for parsing the DAP protocols.

The libdap and Ocapi libraries will continue to be maintained and distributed by OpenDAP. Unidata will distribute a recent, tested release of the OpenDAP libraries from the NetCDF web-site, as is currently done with HDF5 and zlib for netCDF-4.


Deliverables and Schedule

1. libdap++/libnc-dap + netcdf 3.6.x (delivered in pre-beta netCDF snapshot release 3/2008) 

1. The idea here is to take the libnc-dap C++ software and move it into Unidata's code base, get it integrated into the build and get something usable to people right away. The libnc-dap software is effectively the glue code which connects the DAP implementation to the netCDF library.

2. In the subsequent items the C++ DAP implementation is replaced with the C implementation and the glue code is written from scratch by Unidata. 

3. This work will be done at Unidata, and later released with netCDF version 3.7. (See NetCDF 3.7 requirements).

2. Ocapi (DAP2) + Glue + netcdf 4.x (delivered in pre-beta snapshot release 9/2008) (See NetCDF 4.1 requirements). 

1. No HDF5 support 

2. Ocapi bugs fixed 

3. No translation support - no DAP Structures, Sequences but maybe Strings; basically the 'classic' netcdf data model 

3. Ocapi (DAP3.x) + Glue + netcdf 4.x (delivered in pre-beta snapshot release 3/2009) 

4. Ocapi (DAP4) + Glue + netcdf 4/x (delivered in pre-beta snapshot release 9/2009) 

5. Add extensive testing with HDF5 server [?], other testing (delivered in pre-beta snapshot release 12/31/2009) 


Notes: In step 1, glue is libnc-dap in C++ while in the subsequent steps it is written at/by Unidata and is in C.

Deliverables numbers 4 and 5 in the proposal are OPeNDAP's

OPeNDAP is responsible for Ocapi development.

libdap++ will be developed using HDF5 funds

Other Deliverables:

1. DAP 4 specification 

2. libdap++ for DAP 4 

3. netCDF 4.x server which uses DAP4 

4. These should be complete by 3/15/2009 



Licensing

We need to get the licensing issues worked out because it seems that there's some confusion about what is needed - if LGPL has issues, then is the MIT license OK. Sounds like it is, but we need to ensure that the idea of who actually copyrights specific source files needs to be described so that everyone is comfortable.

Testing

We are committed to using the NMI build & test system. We already have B&T systems. We will look at this and act accordingly, trying to get something using NMI in the first year.

Staffing

We will hire one person in both Butte and Boulder. Fallback is to hire two in Boulder if there are no people available in Butte

References

NetCDF Plans from 2007 through 2012, http://www.unidata.ucar.edu/software/netcdf/docs/netcdf_2008_thru_12.html.
NetCDF-3.7 Requirements, http://www.unidata.ucar.edu/software/netcdf/docs/reqs_3_7.html. 


NetCDF-4.1 Requirements, http://www.unidata.ucar.edu/software/netcdf/netcdf-4/req_4_1.html.



