
DAP Data Model Specification
DRAFT

James Gallagher∗, Nathan Potter†, Tom Sgouros

Printed: November 3, 2003
Revision: 1.64

Contents

1 Introduction . 3
1.1 Lexicographical Conventions . 3

2 Variables . 4
2.1 Atomic variables . 4

2.1.1 Integer types . 4
2.1.2 Booleans . 5
2.1.3 Enumerations . 5
2.1.4 Floating point types . 6
2.1.5 String types . 6
2.1.6 Binary images . 6

2.2 Constructor variables . 7
2.2.1 Array . 7
2.2.2 Structure . 8
2.2.3 Grid . 8
2.2.4 Sequence . 9

2.3 Names . 9
2.3.1 Constructor variable names . 9
2.3.2 Fully Qualified Names . 10

2.4 Variable Aliases . 10

3 Attributes . 11
3.1 Attribute Aliases . 11
3.2 Processing Attributes . 12

4 Constraint Expressions . 12
4.1 Limiting data by type and by value . 12

4.1.1 Projections . 13
4.1.2 Selections . 14
4.1.3 Server Functions . 16

4.2 Data Type Transformation Through Constraints . 16

5 Client/Server Interaction . 17
5.1 Request and Response Information . 17

6 Responses . 18
6.1 DDX . 18
6.2 XML Schema . 19

6.2.1 XML Schema Validation . 19
∗The University of Rhode Island, jgallagher@gso.uri.edu
†Oregon State University, ndp@coas.oregonstate.edu

1

6.3 DDX XML Elements . 20
6.3.1 Alias . 20
6.3.2 Array . 20
6.3.3 Attribute . 21
6.3.4 Binary . 24
6.3.5 Blob . 24
6.3.6 Boolean . 25
6.3.7 Byte . 25
6.3.8 Dataset . 26
6.3.9 dimension . 26
6.3.10 Enumeration . 27
6.3.11 enumerator . 27
6.3.12 Float32 . 27
6.3.13 Float64 . 28
6.3.14 Grid . 28
6.3.15 Int16 . 30
6.3.16 Int32 . 30
6.3.17 Int64 . 31
6.3.18 Map . 31
6.3.19 Sequence . 32
6.3.20 String . 32
6.3.21 Structure . 33
6.3.22 UInt16 . 33
6.3.23 UInt32 . 33
6.3.24 UInt64 . 34
6.3.25 Url . 34
6.3.26 Time . 35
6.3.27 value . 35

6.4 Encoding Rules . 35
6.4.1 Attribute and variable Alias source attribute encoding 35
6.4.2 Project element variable encoding . 36
6.4.3 Select element target encoding . 36
6.4.4 Base 64 Attribute value encoding . 36
6.4.5 XML document encoding . 36

6.5 Blob . 36
6.5.1 Length Specification: Representing lengths of encoded data elements 37
6.5.2 Blob framework and reliable error delivery . 37
6.5.3 Atomic Types . 37
6.5.4 Constructor Types . 37

6.6 ErrorX . 39
6.7 ErrorX XML Elements . 39

6.7.1 Error . 39
6.8 Server Capabilities Document . 39
6.9 Server Capabilities Document XML Elements . 40

6.9.1 Description . 40
6.9.2 Function . 40
6.9.3 Parameter . 40
6.9.4 Version . 41

7 Constraint . 41
7.1 Constraint XML Elements . 42

7.1.1 Constraint . 42
7.1.2 Hyperslab . 42
7.1.3 NoAttributes . 43
7.1.4 Project . 43
7.1.5 Select . 44

7.2 Constraint examples . 44

References . 45

2

A XML Schema . 45

B Error Codes . 46

C Change log . 46

1 Introduction

This document describes theData Model of the OPeNDAP1 Data Access Protocol (DAP) Version 4.0. The data
model is the framework—the set of data types and representations—with which the DAP represents the contents of
a data source. The data model also encompasses the objects in which these data types are encoded: the replies with
which an OPeNDAP server responds to requests for data.

This document contains several sections.

Section 2 (page 4) defines what is meant by a data source and describes the kinds of variables a data source may
contain. These variables include the basicatomic types, and the more complexconstructor types.

Section 3 (page 11)All DAP variables can haveAttributesto describe them further. Representation of this informa-
tion is described here.

Section 4 (page 12)Variables in a data source may be sampled by means of a constraint expression, defined in this
section.

Section 5 (page 17)describes the interaction between a client requesting data and the server providing it.

Section 6 (page 18)The variables in a data source are given their persistent representation in the data objects defined
here. This is the representation used to communicate between a server and client.

The DAP is independent of the lower-level communication protocols used to implement it, such as HTTP, FTP,
GridFTP, Telnet,et cetera. DAP implementations currently exist for several communication protocols. HTTP is
the most commonly-used implementation, and a separate document,DAP Web Services Specification, is available
from the OPeNDAP project to specify its use. The OPeNDAP project does not issue specifications for other protocols.
This is left to the groups making the implementation.

A note about terminology. In this document, the words ”client” and ”server” are meant only to imply a program
making a request via the DAP and another program making a reply, respectively. The two programs are probably
running on machines remote from one another, but this is not essential. Like WWW clients and servers, there can be
(and are) many different varieties of DAP clients and servers. The only thing that ties them together is that the client
making the request and the server fulfilling it follow the strictures of this specification.

The DAP specification describes the dialog between requesting clients and responding servers, but it does not specify
the implementation of that dialog. So long as your program can hold up its end of the conversation, there is no limit on
how it is done. Specifically, this means that though the DAP specifies the persistent representation of its abstract data
types (this is the form taken by a message), it does not specify the data structures that may implement these data types
in a computer program. This also means that the programs can use any means to transport the requests and responses,
although the protocol has been written with protocols such as SOAP over HTTP, GridFTP,et c., in mind.

1.1 Lexicographical Conventions

The DAP data model contains a model element called anAttribute. XML element tags also contain attributes. In
order to avoid confusion in this document when we are referring to OPeNDAPAttributeswe will capitalize the first
letter (“A”). When we are referring to XML attributes we will not capitalize the first letter (“a”). In the event that
this distinction is not adequate we will endeavor to make the distinction clear, either from context or from additional
illuminating language.

1Note that OPeNDAP refers to a project, managed by OPeNDAP, Inc., a Rhode Island not-for-profit corporation, while DAP refers to the Data
Access Protocol which is a central component of the OPeNDAP project.

3

2 Variables

The DAP characterizes a data source as a collection of variables. Each variable consists of a name, a type, a value,
and a collection ofAttributes. Attributes, in turn, are themselves composed of a name, a type, and a value (Section 3
on page 11). The distinction between information in a variable and in anAttribute is somewhat arbitrary, especially in
the case of globalAttributes. However, the intention is thatAttributeshold information that aids in the interpretation
of data held in a variable.2 Variables, on the other hand, hold the primary content of a data source.

Each variable in a data source MUST have a name, a type and some value or values. Using just this information and
armed with an understanding of the definition of the DAP data types, a program can read any or all of the information
from a data source. The names and types of a data source’s variables comprise itssyntactic metadata.[10]

The DAP variables come in several different types. There are severalatomic types, the basic indivisible types repre-
senting integers, floating point numbers and the like, and fourconstructor types (also calledcontainer types) which
can be used to define new types by combining instances of both the atomic and constructor types.

This section describes the abstractions that constitute the variable type menagerie: the range of values and the kind
of data each type can represent. For each abstract variable type, there is a more concrete persistent representation,
which is the information actually communicated between a DAP server and its clients. The persistent representation
consists of two parts: the declaration of the type and the encoding of its value(s). For a description of the persistent
representation see Section 6 (page 18) . To see how the types are to be declared, see Section 6.1 (page 18) . For the
encoding of these variable types (how they are to be packaged for transmission) see Section 6.5 (page 36) .

Each variable MAY have one or moreAttributesassociated with it. For information aboutAttributes, see Section 3
(page 11) .

2.1 Atomic variables

As their name suggests,atomic data types are indivisible. There are no constraint expression operators that can be
used to request part of an instance of one of these types (Section 4 on page 12). These variables are used to store
integers, enumerations, booleans and real numbers as well as strings, URLs and times. There are four families of
atomic types, with each family containing one or more variation:

• Integer, Boolean and Enumeration types

• Floating-point types

• String types

• Binary images

2.1.1 Integer types

The integer types are summarized in Table 1. Each of the types is loosely based on the corresponding data type in
ANSI C [13]. However, the DAP, unlike ANSIC, does specify the bit-size of each of the integer types. This is done
so that when values are transfered between machines they will be held in the same type of variable, at least within the
limits of the software that implements the DAP.

2Attributesappear in many data storage systems such as netCDF[9], HDF4[7] and HDF5[8]. They also appear under the moniker ‘property’ in
Common Lisp[11].

4

NOTE: move this to a more appropriate section, maybe its own. . . Maybe a section that combines the length spec
and other stuff that is used in several places. jhrg 11/2/03

When implementing the DAP, it is important, of course, to match information in a data source or
read from a DAP response to the local data type which best fits those data. In some cases and exact
match may not be possible. For example Java lacks unsigned integer types[2]. Implementation faced
with such limitations MUST ensure that clients will be able to retrieve the full range of values from
the data source. As a practical consideration, this may be implemented by hiding the variable in
question or returning an error.

If a variable is automatically hidden (i.e., the server analyzes the data source and determines that a
particular variable cannot be represented correctly and automatically removes it from those variables
made accessible using the DAP, this MUST be noted by adding a globalAttributeto the data source
indicating this has taken place. The note MUST include the name of the variable(s) and the
reason(s) for their exclusion. If a variable is removed by a human, thisAttribute is OPTIONAL.

In their persistent representation in the DAP, integer values are stored astwos-compliment big-endiannumbers.3 See
Section 6.5.3 (page 37) .

Table 1: The DAP Integer Data types.

name description range
Byte 8-bit unsigned char 0 to28 − 1
Int16 16-bit signed short integer -215 to 215 − 1
Uint16 16-bit unsigned short integer 0 to216

Int32 32-bit signed integer -231 to 231 − 1
Uint32 32-bit unsigned integer 0 to232

Int64 64-bit signed integer -263 to 263 − 1
Uint64 64-bit unsigned integer 0 to264

2.1.2 Booleans

Data which can take on only one of two values, true or false, may be represented using theBooleandata type. This
type is used by data storage software such as HDF5[8] and data communication specifications such as ASN.1[5].

See Section 6.5.3 (page 37) for the description of howBooleansare encoded for transmission.

Table 2: The DAPBooleantype.

name description
Boolean One of two possible values: either true or false.

2.1.3 Enumerations

An Enumerationis used to represent a set of discrete named values. The values MUST be integers between−231 and
231 − 1. No value may be used more than once. The intent is that the size of the set will be small; anEnumeration
should not be used to represent a set of thousands or millions of values, although there’s nothing in principal preventing
such a use. To represent the values, a signed 32-bit integer is used. AnEnumerationMUST include a symbolic name
for each integer value.

See Section 6.5.3 (page 37) for the description of howEnumerationsare encoded for transmission.

3Big-endian is the default byte order for data transmissions, but see Section 5.1 (page 17) regarding negotiation of byte order.

5

Table 3: The DAPEnumerationtype.

name description
Enumeration a set of unique discrete integral values greater than or

equal to zero, each enumerated and bound to symbol.

2.1.4 Floating point types

The floating point data types are summarized in Table 4. The two floating point data types use IEEE 754 [15] to
represent values. The two types correspond to ANSIC’s float anddouble data types.

In their persistent representation, floating point values are stored by default using big-endian notation. See Sec-
tion 6.5.3 (page 37) .

Table 4: The DAP Floating Point Data types.

name description range
Float32 IEEE 32-bit floating point

[15]
±1.175494351× 10−38 to
±3.402823466× 1038

Float64 IEEE 64-bit floating point ±2.2250738585072014× 10−308 to
±1.7976931348623157× 10308

2.1.5 String types

The string data types are summarized in Table 5. There are three. The first is a simple string type corresponding to
the ANSI C notion of a string: a series of Unicode (ISO 10646) characters. The DAP uses the UTF-8 encoding of
Unicode characters.

There is no limit to the size of aString; the length is specified using aLength Specifiaction(See Section 6.5.1 on
page 37). Unicode characters can each be several bytes long, but note that UTF-8 encoding is identical to US-ASCII
encoding for character values up to 127 (hexadecimal7f). This means that strings that contain only characters from
the 7-bit ASCII set are one byte per character, and use the standard ASCII encoding. Characters from 128 to 255 (hex
80 to ff) are encoded into two bytes in UTF-8 [1].

The DAP also provides aURLdata type which is identical to aString, but has the specific meaning of a pointer to some
WWW resource. In DAP applications, this is usually used to refer to another data source, in a manner reminiscent of
aC pointer. Unlike theStringtype, aURL is limited to standard (7-bit) US-ASCII characters, due to the limitations of
the syntax of Internet URLs[3].

The last string type the DAP provides is theTimedata type which is identical to aString, but has the specific meaning
of an ISO8601[6] date/time string. The ISO Date/Time standard provides a way to encode dates, both local and UTC
times and time ranges[12]. TheTimedata type is included in the DAP so that date and time information may be
represented in a standard fashion.

In general, most data sources will not use ISO8601 date-time strings; servers SHOULD provide both the native repre-
sentation of date-time information and the ISO8601 representation. This will allow savvy clients to exploit the native
representation while more generic clients can access the data source without the need to accommodate its quirks.

Stringsare individually sized. This means that in constructor data types containing multiple instances of someString,
such asSequencesandArrays, successive instances of thatStringMAY be of different sizes.

See Section 6.5.3 (page 37) for other details of the persistent representation ofStrings.

2.1.6 Binary images

Binary Imagesare uninterpreted, opaque, lumps of digital data. There is no limit to the size of aBinary Image; the
length is specified using aLength Specifiaction(See Section 6.5.1 on page 37). They are meant as a way for a server

6

Table 5: The DAP String Data types.

name description
String a series of Unicode (UTF-8) characters.
URL a series of US-ASCII characters (the Internet doesn’t

support Unicode in URLs), meant to represent an on-
line resource somewhere, usually another data source.

Time a series of Unicode (UTF-8) characters which contain
a valid ISO 8601 date/time string.[6]

to pass elaborate data types to a client without having to encode them in the DAP data model. For example, a digital
sound clip, say an MP3 file, could be represented as a one-dimensional DAPArray of integer values. But if the server
stores these as MP3 files, and the client can play them as such, then it may not be efficient to convert from MP3 to the
DAP Array and then back again.4

Binary Imagesare individually sized. This means that in constructor data types containing multiple instances of some
image, such asSequencesandArrays, successive instances of thatBinary ImageMAY be of different sizes.

See Section 6.5.3 (page 37) for the description of how binary images are encoded for transmission.

2.2 Constructor variables

Theconstructor types are assembled from collections of other variables. A constructor type MAY contain both atomic
and constructor types. There are no restrictions on the number of levels of nesting.

There are four constructor data types:

• Array

• Structure

• Grid

• Sequence

2.2.1 Array

An Array is a one-dimensional indexed data structure similar to that defined by ANSIC. An Array’s member variable
may be of any DAP data type with the exception of theEnumerationtype.

MultidimensionalArraysare defined asArraysof Arrays. Multi-dimensionalArraysare stored inrow-major order
(as is the case with ANSIC). The size of eachArray’s dimensions MUST be given. There is no limit to the size or
number of anArray’s dimensions; the length is specified using aLength Specifiaction(See Section 6.5.1 on page 37).

Each dimension of anArray MAY also be named.

Arraysof Stringsand binary images MAY contain elements of varying lengths. However, multi-dimensionalArrays
MAY NOT have rows or columns of varying lengths. If you need a structure like this, consider aSequenceof Sequences
or aSequenceof Arrays. Note that in the latter case, aSequenceof Arrays, each instance of the array MUST be the
same size.5

See Section 2.2.4 (page 9) for more about the possibilities and the limitations.

Note: Arraysof Enumerationsare NOT allowed.

4Note that, as with the case of the MP3, the word ”images” does not necessarily refer to image data, though obviously you can use aBinary
Imageto transmit GIF data, for example. The word only implies that the binary data within aBinary Imageis uninterpreted, and MUST be preserved
intact through any representation transformation.

5The types of the variables which comprise a Sequence are be the same for each instance (i.e. ’row’) of that Sequence. For arrays, the ’shape’
is part of the type.Where the protocol demands that Sequence be used, an interface for client application programs is free to make those look like
arrays with varying lengths.

7

2.2.2 Structure

A Structure groups variables so that the collection can be manipulated as a single item. TheStructure’s member
variables MAY be of any type, including other constructor types. The order of items in theStructureis significant only
in relation to the persistent representation of thatStructure.

There is a special case of theStructuredata type, calledDataset. This is the container that encompasses all the
variables provided in some data source.

2.2.3 Grid

A Grid is a special case of aStructure, used to supply information to aid in the interpretation ofArrays. A Grid sets
up an association between a targetArray and a collection of ”map”Arrays. Each dimension of the target array MUST
correspond to one or more dimensions of the map arrays. For example, a two-dimensional target array could map to
a collection of identically-sized two-dimensional map arrays, or to an assortment of one-dimensional map vectors. A
three dimensional array might map to a collection of one-, two-, and three-dimensional map arrays.

A common use for this kind of data might be raw satellite data, where measurements are frequently not on a regular
latitude-longitude grid. In the example shown, data values (zmn) can be associated with arbitrary latitude (ymn)
and longitude (xmn) values, while still retaining their gridded nature. One can easily add a time dimension to the
collection, as well. The result is that any element in the target array has a corresponding latitude, longitude, and time
value.

target =


z11 z21 · · · zm1

z12 z22 · · · zm2

z13 z23 · · · zm3

...
...

...
...

z1n z2n · · · zmn



mapx =


x11 x21 · · · xm1

x12 x22 · · · xm2

x13 x23 · · · xm3

...
...

...
...

x1n x2n · · · xmn

mapy =


y11 y21 · · · ym1

y12 y22 · · · ym2

y13 y23 · · · ym3

...
...

...
...

y1n y2n · · · ymn

mapt =


t1
t2
t3
...
tn


This Grid indicates that eachz valuezij corresponds to the values of thex andy maps at(i, j). It also indicates that
each row ofzi (andxi andyi) correspond to an element of the column vectort. Such a data structure might be used
to hold satellite data before it has been processed into a ‘picture.’ In that case thez target array might be a reflectance
value from the satellite’s sensor, thex andy maps would provide the latitude and longitude for each pixel inz and the
t map would hold the time at which each scan line was collected.

A Grid will always contain a target array, and at least one map array. The only other requirement is that each dimension
of the target array MUST correspond to one or more dimensions in the map arrays. The arrays in theGrid—target or
map— MAY be anAlias to arrays somewhere else in the dataset (Section 2.4 on page 10). This can save transmission
bandwidth by avoiding the repetition of data when maps are common to more than oneGrid.

A special case ofGrid is an association of anN dimensionalArray with N vectors (one-dimensionalmap vectors),
each of which has the same number of elements as the corresponding dimension of theArray. Each vector is used to
map indexes of one of theArray’s dimensions to a set of values which are normally non-integer (e.g., floating point
values).

Schematically, the special case of theGrid is like the following:[
x1 x2 x3 · · · xm

]
y1

y2

y3

...
yn




z11 z21 z31 · · · zm1

z12 z22 z32 · · · zm2

z13 z23 z33 · · · zm3

...
...

...
...

...
z1n z2n z3n · · · zmn


8

Each column of thez Array corresponds to an entry in thex map vector, and each row ofz corresponds to somey
value. So, for example, the data value atz42,33 corresponds to the valuesx42 andy33.

The Grid type was created to deal with geo-located data, with irregular spacing of the rows and columns, which is
useful when converting to and from different map projections. But theGrid structure is more generally useful. For
example, one of the map vectors could be anArray of (x, y) pairs (stored in aStructure), and the other a series of
time values, and theGrid would become a record of several synoptic time series. The maps MUST beArrays, but the
ArraysMAY be collections of any DAP data type exceptSequence, Grid, Binary Image, or Enumeration.6

2.2.4 Sequence

A Sequencecan best be described as an ordered collection of zero or moreStructures. Each instance in the series
consists of the same set of variables, but contains different values.

The semantics of theSequencedata type are very close to those of a table in a relational database. You can think of
the instances in aSequenceas rows in a traditional relational table. OPeNDAP servers that serve data from a DBMS
like Oracle or mySQL useSequencesto reflect the structure of their data.

A SequenceS can be represented as:

s11 s21 · · · sn1

s12 s22 · · · sn2

...
...

...
...

s1i s2i · · · sni

...
...

...
...

Where eachs1 · · · sn entry represents a set of DAP variables, and the collection of such entries constitutes theSe-
quence. Every entry ofSequenceS has the same number, order, and type of variables. Ifs21 is a Float64, then all
thes2i will also beFloat64variables. Similarly, in aSequencewhich contains anArray or Structure, each instance of
theArray or Structurewill be the same size. However, aSequenceMAY contain aSequenceand each instance of the
interiorSequenceMAY have a different number of entries. Also, unlike anArray, aSequencehas no explicit size.

Note that though the semantics ofSequencesplaces limitations on the kinds of requests a client may make
of a server, once theSequencehas been retrieved, a client program may reference it in any way desired.
The DAP defines the persistent representation of data types, and the interaction between client and server
(which includes what kinds of requests can be made for what kind of variables), but the DAP does not
specify the internal implementation of the data types for any client or server.

2.3 Names

A DAP variable’s name MAY contain any UTF-8 characters. However, some interfaces may require that any characters
not part of US-ASCII be escaped so that the names are represented in US-ASCII.7

2.3.1 Constructor variable names

The members of a constructor variable can be individually addressed in the following fashion:

Array Individual items are addressed with a subscript. For anArray namedTemp, the fourteenth member of theArray
is referenced asTemp[13] (all indexes start at zero). A two-dimensionalArray is addressed with two subscripts,
contained in separate brackets:SurfaceTemp[13][3]. See Section 4 (page 12) .

Structure Members of theStructureare addressed by appending the member name to theStructurename, sepa-
rated by a forward slash (/). If the StructurePosition has a member namedHeight, then it is addressed as
Position/Height. The members of aStructureMUST have different names from one another.

6This restriction has been put in place to keep writing general clients tractable. If the set of data types in aGrid’s mapArrays is allowed to be a
Sequence, for example, any general client would have to be capable of processing that data type in a response. Such a client would be very hard to
build.

7The HTTP GET interface from OPeNDAP will require this if it’s implemented for DAP 4.

9

Grid The arrays in aGrid MAY be referenced in the same fashion as the members of aStructure. For a two-
dimensionalGrid namedCloud, with one-dimensional map vectorsLatitude andLongitude, a member of
a map vector is be addressed like this:Cloud/Latitude[36]. This refers to a single latitude value. You
can also request part of the target array:Cloud/Cloud[36][42], which will return a single data measure-
ment. TheGrid itself MAY be addressed like anArray: Cloud[36][42], which will return the same value
asCloud/Cloud[36][42], but as aGrid. See Section 4.2 (page 16) for an explanation of how data types are
transformed by constraints.

Sequence A Sequencemember is addressed in the same fashion as aStructure. That is, a time calledReleasedate
of a SequencenamedBalloons is addressed asBalloons/Releasedate. But note that unlike aStructure,
this name references as many different values as there are entries in theBalloons Sequence. A single entry
or range of entries in aSequenceMAY be addressed with a hyperslab operator like the items in anArray. The
variables in aSequenceMUST have different names from one another.

2.3.2 Fully Qualified Names

Variables andAttributesexist in the same name-space. This fact has significant impacts on the way that datasets can
be organized. There cannot exist a variable and anAttribute of the same name at the same level of a dataset. This
is primarily of concern for constructor variables: If a constructor variable has a member variable namedtime then it
MAY NOT also have anAttributenamedtime. This rule allows thefully qualified nameof eachAttributeand variable
in a Datasetto be unique. Note that in this example, the variabletime is essentially anAttribute structure inside of
the parent constructor variable. In essence all variable members variables of a constructor variable act asAttribute
structures within the constructor variable.

Variable Names

The fully qualified nameof a variable is composed of the ordered collection of variable names, starting at theDataset
level but not including theDatasetname, that can be followed to the terminal variable name. The names MUST be
separated by the slash (“/”) character, and thefully qualified nameMUST begin with the slash (“/”) character. Said
another way, thefully qualified nameof any variable in aDatasetis the concatenation of the variable’s name, preceded
by the forward slash separated list of the names of the Constructor variables that contain it. The first name MUST be
a variable name at theDatasetlevel preceded by a forward slash.

Thus, if aDatasetnamedtest contains a structure namedsst which contains a variable namedfoo, thefully qualified
namewould be/sst/foo.

Attribute Names

Thefully qualified nameof anAttributeis composed of the ordered collection of variable andAttributenames, starting
at theDatasetlevel but not including theDatasetname, that can be followed to the terminal sourceAttribute. The
names MUST be separated by the slash (“/”) character, and thefully qualified nameMUST begin with the slash (“/”)
character. If afully qualified namefor anAttribute terminates with a regular variable name, then it will be interpreted
to refer to the collection ofAttributesassociated with said variable.

Thus, if aDatasetnamedtest contains a structure namedsst which contains a variable namedfoo, thefully qualified
nameof theAttributesof foo would be/sst/foo. If foo possessed anAttributenamedfruit then thefully qualified
namefor fruit would be/sst/foo/fruit.

2.4 Variable Aliases

A variable in a DAP data source might contain no data of its own, but simply be a pointer to some other variable in
the set. Such a variable is called anAlias. An Alias is useful for achieving compatibility with other data sources, for
conforming to metadata requirements, and for conserving bandwidth in large data transmissions.

A variableAliasMAY refer only to another variable. It MAY NOT refer to anAttribute. It MAY NOT refer to another
variableAlias.

An Alias MUST be defined using thefully qualified name(see Section 2.3.2 on page 10) of the variable to which it
refers. This means that if aDatasetcalledtest contains aStructurecalledS that contains both a variable calledV and
a variableAliasdirected at that variable calledM, thenM MUST referenceV as/test/S/V.

There are significant restrictions on the use ofAliasesin conjunction with theSequencedata-type. AnAlias member
of a SequenceMAY refer to a member variable of the sameSequence. An Alias member of aSequenceMAY NOT

10

refer to a variable outside of theSequence. This may seem a little arbitrary at first, but consider that every member
variable of aSequenceis multi-valued. It makes little sense to allow anAlias to refer to such a variable, unless the
Aliasexists in the same dimensional space. This can only be guaranteed if theAlias is a member of the sameSequence
as the variable to which it refers.

See the discussion of theAliaselement in Section 6.3.1 (page 20) for specific information about the syntax of anAlias.

3 Attributes

Each variable in a data source MAY have zero or moreAttributesassociated with it. The entire dataset (see Sec-
tion 2.2.2 on page 8) MAY itself haveAttributes, too. These are calledglobal Attributes . All Attributesare held
within Attribute structures, even when there is only oneAttributeassociated with a variable. Every variable acts as an
Attributestructure. This includes theDatasettype, which contains the globalAttributes.

While the DAP does not require any particularAttributes, some may be required by variousmetadata conventions.
TheAttributesassociated with a data source and its variables comprise thesemantic metadatafor that data source.

The data model forAttributesis somewhat simpler than that for variables. AnAttributeMAY be be set of 1 or more
values of the sameatomic type, OR it MAY be astructure that contains otherAttributes, but not individualvalues.
In other words anAttributeMAY be a list of values of the same atomic type, or it MAY be a container of additional
Attributes. An AttributeMAY NOT contain bothvalues and otherAttributes.

An Attribute’s value MAY be a any of the following atomic types:

• Boolean

• Byte

• Int16

• UInt16

• Int32

• UInt32

• Int64

• UInt64

• Float32

• Float64

• String

• URL

An Attributethat contains otherAttributesMUST be of typestructure.

There are two special types ofAttributes: modifier andalias. Attributesof typealias are discussed in Section 3.1
(page 11) .Attributesof typemodifier are discussed in Section 3.2 (page 12) .

There are examples ofAttributedefinitions in the description of theAttributeelement in Section 6.3.3 (page 21) .

3.1 Attribute Aliases

A special type ofAttribute is alias . In a manner comparable to a variableAlias (see Section 2.4 on page 10), a
variable’sAttributesMAY also be aliased, with anAttribute of one name referring to a differentAttribute (possibly
with a different name). AnAttributeof one variable MAY be an alias that refers to anAttributeof another variable.
Attributealiases MAY only refer toAttributes. They MAY NOT refer to variables or otherAttributealiases.

11

An Attributealias MUST be defined using thefully qualified nameof theAttributeto which it refers. See Section 2.3.2
(page 10)

See the discussion of theAttributealias type in Section 4 (page 21) for specific information about the syntax of an
Attributealias.

3.2 Processing Attributes

The processingAttributesare a special set ofAttributesused to record modifications to a dataset’sAttributesor its data.
After a dataset is released, other people may copy the data and make it available in modified form, or with secondary
data products added, or withAttribute information that may make the data conform to some data standard. However
useful these modifications might be, it is essential that users of some dataset be able to determine which parts of that
set are original, and which have been added subsequent to the original publication. The processingAttributesexist to
provide a way to create an ”audit trail” that will permit users to determine how a dataset has been modified.

The key piece of information is a globalAttributeof typemodifier, which is essentially the signature of the organi-
zation that has performed the modification. Amodifier Attributecontains:

• A DAP URL for the original source of data. This MUST be held in aURL Attributeand the name of theAttribute
MUST beorigin server;

• The name or description of the organization that is providing the modified data. This MUST be held in aString
Attributeand the name of theAttributeMUST beorganization;

• The URL of the service which has introduced the changes. This MUST be held in aURL Attributeand MUST
be namedmodifying service.

Attributesof type modifier MAY only appear at the top level of a data set. They MAY not be used as members
of otherAttributesor of other variableAttribute structures. Example 5 on page 23 shows an example of a modifier
Attribute.

4 Constraint Expressions

A constraint expressionprovides a way for DAP client programs to request certain variables, or parts of certain
variables, from a dataset. Many datasets are large and many variables in datasets are also large. Clients are often
interested in only a small number of values from the entire dataset. Constraint expressions provide a way for clients
to tell a server which variables, and in many cases, which parts of those variables, they would like. In addition, the
constraint expression can be used to request that the server to omit theAttribute information from a DDX.

This section presents the subsamping abilities that MUST be provided by a DAP compliant server. It does so without
binding these capabilities to any particular syntax; see Section 7 (page 41) for the XML representation of a constraint
expression. Some transport protocols may choose to implement additional syntaxes but MUST implement the syntax
described in Section 7.

Note that an empty constraint expression implies that the entire data source is to be accessed.

4.1 Limiting data by type and by value

A constraint expression provides two different methods to access the information held by a data source. The constraint
expression can be used to limit data using the names of variables or by scanning variables and returning only those
values that satisfy certain relational expressions. The former are reffered to aprojections while the latter are called
selections.

A constraint expression MAY combine both projection and selection constraints. For example, a projection might
specify that temperatures held in aSequenceare to be returned, and a selection would specify that onlySequence
entries with dates later than 1999 are to be examined. The result returned from a request like this would be aSequence
of temperature measurements taken after 1999.

12

Section 4.1.1 (page 13) describes the projection operations which any DAP implementation MUST support and, like-
wise, Section 4.1.2 (page 14) describes the required selection operations.

To provide implementors with a means to extend the constraint expression mechanism, it is possible to add functions
to a server and to call those as part of the constraint expression. Functions are described in Section 4.1.3 (page 16) .

4.1.1 Projections

Theprojection clauseof a constraint expression provides a way to choose parts of a data set based on the shape of the
Datasetand the variables that comprise it. There are two types of projection operations. First, it is possible to choose
individual fields of the constructor data types. This is calledfield projection and applies to theStructure, Grid and
Sequencedata types in the following ways:

Structure A field projection which chooses one or more fields from aStructurevariable causes a DAP server to return
only those named fields from theStructure. Note that theDatasetitself is aStructure.

Grid A field projection which chooses one or more fields from aGrid variable causes a DAP server to return only
those named fields from theGrid. It is likely that the variable returned will no longer meet the criteria for
a correctly formedGrid data type, so the variable may be returned as aStructureinstead (see Section 4.2 on
page 16).

Sequence A field projection which chooses one or more fields from aSequencevariable causes a DAP server to
return only those named fields from theSequence. For theSequencetype, this means returning theN instances
but limiting the fields those given the in the field projection. For example, suppose theSequenceS has3 fields:

s11 s21 s31 · · · sp1

s12 s22 s32 · · · sp1

...
...

...
...

...
s1i s2i s3i · · · spi

...
...

...
...

...

If a field projection is used to choose only the second field, the result of accessingS would be:

s21

s22

s23

s24

...

The second type of projection is ahyperslab. A hyperslab is used to limit returned data to those elements that fall
within a range of index values, and MAY also specify that the range be subsampled using astride . By including a
hyperslab projection for one or more dimensions of a variable it is implied that any unnamed dimensions are to be
returned in their entirety.8 A hyperslab is applied to theArray, Grid andSequencetypes in the following way:

Array Array dimensions are numbered0, . . . , N − 1 for an Array of rank N . Within each dimension of sizeM ,
elements are numbered0, . . . ,M − 1. A hyperslab projection for dimensionn, 0 ≤ n < N MUST include
the starting indexins

and ending indexine
such thatins

≤ ine
∀{0 ≤ in < M}. If a stride is included in the

hyperslab and is greater thanine − ins then the hyperslab is equivalent to one whereins = ine and the original
value ofine is discarded.

Grid Grid dimensions are numbered as areArray dimensions;Grid dimensions MAY have hyperslab projetions
applied to them in a manner similar toArraysexcept that a hyperslab applied to aGrid is applied to not only the
target array, but also all the corresponding map arrays. For example, given theGrid:

target =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

map1 =


−53 −52 −51 −50
−52 −51 −50 −49
−51 −50 −49 −48
−50 −49 −48 −47

map2 =


26 25 24 23
25 24 23 22
24 23 22 21
23 22 21 20


8For some interfaces, it may be necessary to place more restrictions on hyperslab projections.

13

A hyperslab projection which chose row indexes 1 and 2 and column indexes 1 and 2 would cause a server to
return:

target =
[

6 7
10 11

]
map1 =

[
−51 −50
−50 −49

]
map2 =

[
24 23
23 22

]
for theGrid.

Note that a field and hyperslab projection can be combined for aGrid to choose only part of one of the fields,
say just part of the the targetArray. In this case, the hyperslab applied to one field of theGrid is equivalent to a
hyperslab applied to anArray. Effectively, the field projection yields anArray and the hyperslab is then applied
to thatArray.

Sequence A hyperslab can be applied to aSequence. A Sequencewith M instances can have a hyperslab projection
applied to it as if it is anArray of rank 1. Since theSequencetype does not contain an explicit dimension size,
the sizeM is not known until the entireSequenceis accessed.9 A hyperslab projection can be used to ask for
the firstm elements, the nextm elements, etc., which may be very useful for clients which need to know the
sizes of varaibles before accessing them. A hyperslab projection for aSequence(is, ie) will return m instances
of theSequencesuch thatm = bie,M − 1c − is depending on whetherie is an index greater than the number
of instances in theSequence.

It is possible to ask for values from several variables in a single constraint expression by including several projections
in the constraint expression. Also note that an empty constraint expression, by convention, projects all of every variable
in a data source.

4.1.2 Selections

A selection provides a way to limit data accessed based on the value(s) of those data. In many ways selections
are similar to WHERE claues in SQL[4]. A selection is comprised of one or more relational sub-expressions. Each
sub-expression MUST be bound to a variable listed in a projection clause. When several sub-expressions comprise a
selection, the boolean value of the selection is the logicalAND of each of the boolean values of each sub-expression.
Note that there is no way to perform a logicalOR operation on the sub-expressions but there is a way, within a sub-
expression, to test several values and returntrue if any satisfy the releation.

Each of the relational sub-expressions (i.e., relations) is composed of two operands and a relational operator. Each
operand MUST be an atomic data type; it MAY be afully qualified namefrom the data source or a constant. In some
cases there are further limitations on the allowed types based on the relational operator. Table 6 lists the operators,
their meaning and the data types on which they may be applied.

The operands in a relation MAY be either single or multi-valued. If an operand has more than one value, each value is
used in succession when evaluating the relation. For example, suppose there is a relation:

site = {“Diamond St”, “Blacktail Loop”}

Then that relation is true for any instance wheresite is either “DiamondSt” OR “Blacktail Loop”.

Selections MAY be applied toSequenceandGrid data types in the following ways:

Sequence Logically, the relations in a selction bound to aSequenceare evaluated once for every instance (i.e., row)
of the Sequence; the result of applying the selection to theSequenceis a Sequencewhere all of the instances
satisfy all of the relations.

A SequenceS with three fields and four instances such as:

index temperature site
10 17.2 Diamond St
11 15.1 Blacktail Loop
12 15.3 Platium St
13 15.1 Kodiak Trail

9For manySequencevariables, it may never be the case that the entireSequenceis accessed since it may contain millons of instnaces.

14

Table 6: DAP Selection Relational Operators

Operator Meaning Types
< Less than Byte, Int16, Int32, Int64, UInt16,

UInt32, UInt64, Enumeration,
Float32, Float64, Time

≤ Less than or equal to Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

> Greater than Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

≥ Greater than or equal to Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

= Equal Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Boolean, Enumer-
ation, Float32, Float64, String, Url,
Time

6= Not equal Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Boolean, Enumer-
ation, Float32, Float64, String, Url,
Time

=~ Regular expression match String, Url, Time

A selection such asindex ≥ 11 would choose the last three instances:

index temperature site
11 15.1 Blacktail Loop
12 15.3 Platium St
13 15.1 Kodiak Trail

The selectionsite=~“. ∗ St” would choose two instances:

index temperature site
10 17.2 Diamond St
12 15.3 Platium St

And a selection with the two sub-expressionsindex ≤ 11, site=~“. ∗ St” would return only one instance:

index temperature site
10 17.2 Diamond St

Grid When selections are applied toGrids with multi-dimensional map arrays, the returned data will be the smallest
rectangular (contiguous) subset of theGrid that contains all the data that satisfies the constraint. For example,
suppose there is aGrid which has a target array of rank two and two map arrays, each of which also have rank
two, such as:

target =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 lat =


−53 −52 −51 −50
−52 −51 −50 −49
−51 −50 −49 −48
−50 −49 −48 −47

 lon =


26 25 24 23
25 24 23 22
24 23 22 21
23 22 21 20


Suppose theGrid is constrained by a selection clause that limits returned values to those wherelat is greater
than 24.5 andlon is less than -50.5. TheGrid returned by such a constraint would be:[

1 2
5 6

] [
−53 −52
−52 −51

] [
26 25
25 24

]
Notice that one point is returned that does not satisfy theSelectprovision.Gridsare constrained to be rectangu-
lar.

15

4.1.3 Server Functions

A constraint expression can also use functions executed by the server. These can appear in a selection or in a projection,
although there are restrictions about the data types functions can return.

A function which appears in the projection clause MAY return any of the DAP data types. In this case the return value
of the function is treated as if it is a variable present in the top level of theDataset.

A function which appears in the selection clause MAY return any atomic type if it is used as an argument in one of the
relational sub-expressions. If a function in the selection clause is used as the entire sub-expression, it MUST return a
Booleanvalue.

When functions encounter an error, a DAP server MUST signal that condition by returning an error response. A server
MAY NOT return a partial response; any error encountered while evaluating the constraint expression MUST result in
a response that contains an unambiguous error message.

4.2 Data Type Transformation Through Constraints

When a constraint expression has a projection clause that identifies a piece of a constructor variable, such as one field
of a Structureor just the array part of aGrid, the lexical scopingof the variable is not abandoned. This is important
for avoiding name collisions. For example, if you request only one item from aStructure, you get aStructurereturned
that has only one member variable.

Here is the behavior for each data type:

Array An Array is always returned as anArray of the same rank as the sourceArray. A hyperslab request that
effectively eliminates a dimension by reducing its size to1 doesnot reduce the rank of the returnedArray. For
example, suppose a 10 by 10 elementArray was subsampled to a 1 by 2Array. The returned variable would
still be described as a two dimensionalArray.

Structure A Structureis always returned as aStructure. If the projection clause of a constraint expression selects
only one member of theStructure, then a one-memberStructureis returned. If more than one member of the
Structureare named in the projection clause, they MUST be returned in the sameStructure.

Grid A Grid modified with a hyperslab operator will return anotherGrid, following the same rules as anArray. But
if the projection clause specifies the elements of theGrid independently of one another—the target array, or
one of the maps—then aStructureis returned containing only the specified variables. A two-dimensionalGrid
namedCloud will return aGrid in response to a request like this:Cloud[1:10][20:30]. But a request for the
target array alone—Cloud/Cloud[1:10][20:30]— will return aStructurecalledCloud containing anArray
calledCloud. The map arrays will not be returned.

A Grid modified with a selection will remain aGrid. The return value of such a constraint is the smallest
rectangularGrid that contains all the data points that satisfy the given constraint. Further, the rank of theGrid is
not reduced. A four-dimensionalGrid, when sampled with a selection clause, will still return a four-dimensional
Grid, even if some of the dimensions are of length one.

Sequence A Sequenceis always returned as aSequence, even if a selection clause selects only a single entry or no
entry at all. If a projection clause identifies more than one member of theSequence, they MUST be returned in
the sameSequence.

NOTE:

What about allowing selection based onAttributecontent? Say, all variables with origin=“helena”? All variables
with aAttributenamed “units”? All variables with anAttributenamed “units” whose value is “cm”?

This might be difficult, but well worth the effort.

16

5 Client/Server Interaction

The DAP is based on the request/response paradigm for client-server interaction.10 This section provides an overview
of the requests and responses (i.e., the messages) which DAP-compliant servers MUST support. These messages are
used to request information about the capabilities of a server, to request information about a particular data source
made accessible by a server as well as requesting data values from the server. Messages which access a particular data
source use the previously described data model. Other messages use simpler documents with contents which do not
need a formal abstract definition.

The table below provides a description of the DAP messages. The precise details of the requests and responses are
described in Section 6 (page 18) and Section 7 (page 41) . The mechanism used to communicate those requests and re-
sponses to/from a client and server depend on the transport protocol in use. (ConsultDAP Web Services Specification
for an HTTP implementation.) But whatever the protocol, a server MUST be able to provide the responses outlined in
Table 7.

Table 7: DAP Requests and Responses

Requests Response
Data, MAY include a constraint expression
(Section 4 on page 12)

DDX (Section 6 on page 18)

Data (binary) Blob (Section 6.5 on page 36)
Characteristics of server Capabilities document (Section 4.1.3 on

page 16)
ErrorX object (Section 6.6 on page 39)

For a client to get data from a server takes at minimum two exchanges, first to request the DDX, and second to get the
Blob. The DAP is at root a stateless protocol. The server is not required to remember anything from one request to
another. A client has the responsibility to make the two requests correspond.

If a constraint expression is included in a request for a DDX, the returned DDX MUST contain a Blob reference that
refers to the constrained data.

In addition to these data objects, a DAP server MAY provide additional “services” which clients may find useful. The
HTTP implementation of the DAP, for example, provides HTML-formatted representations of a dataset’s structure and
a way to get data represented in CSV-style ASCII tables. These additional services are not described in this document;
they are considered specific to different transport protocols and are described by the specifications for those particular
protocols (such as theDAP Web Services Specificationdocument).

5.1 Request and Response Information

The following information MAY be included in ANY request-response interaction between DAP a client-server pair.
Because different transport protocols often provide ways to encode this type of information (e.g., HTTP provides a
way to encode the date of the response), a concrete syntax for representing this information is not presented here; that
syntax MUST be included in the transport-specific DAP specification.

Compression DAP clients MUST be provided a way indicate to a server that they are able to process compressed
responses. A server MAY compress a response ONLY if a client has indicated that it can process the compressed
response. A server is NEVER under and obligation to compress a response.

Support for particular compression algorithms is specific to the transport protocol.

User agent DAP clients MAY provide information about the client software to the server. DAP servers MAY log this
information. Note that DAP servers MUST provide their version and software information to clients and do so
using a special response.

Date Servers MUST provide a date stamp which conforms to RFC 1033 in their responses, and they SHOULD also
provide the last modification date, also conformant to RFC 1033, of the data requested.

10Should we add a reference to Fielding, ”REST” here?

17

Byte Order DAP clients MUST be able to indicate their native byte order to a server. A server MAY choose to use
little-endian byte order with a client that indicates that is its native byte order. By default the DAP uses big-
endian byte order for all data exchanges. All DAP clients MUST be able to understand responses in big-endian
byte order.

Floating-point Format Like the byte order, a client and server that agree on a floating-point format different than the
IEEE 754 standard used by the DAP should be able to communicate that fact to each other, and skip converting
data only to convert it back. A client MUST be able to indicate its preferred floating-point format; a server
MUST be able to IEEE 754.

6 Responses

In order to pass data from server to requester, it needs to be transformed into a representation both can understand. In
the same way that the idea behind a book needs to be written down and printed in order to transfer the idea from the
writer to the reader, a dataset—an abstract set of numbers and the relationships between them—needs to be transformed
into a more tangible form in order to be communicated.

For the DAP, this form is called thepersistent representation.11 This is to contrast it with the representations used
within the memory of some program that can process this data, which of course only persist as long as the program is
running. The persistent representation may also be contrasted with the file format used to store some data on a disk
somewhere. File formats, though persistent, tend to be specific to particular machine architectures. The DAP needs a
data representation that can be understood by all the clients and server programs likely to be used on it.

Under the DAP, there are four categories of information that pass from the server to the client: information about
data, the data itself, error messages, and information about the server. The first three of these correspond to the three
important DAP data objects: the DDX, Blob, and ErrorX objects. Information about a DAP server is provided by
version messages and the Server Capabilities Document. These are described in detail in this section.

Some of the details about how DAP data objects are transmitted from server to client are specific to the communication
protocol used. For these details relevant to the HTTP version of the DAP, seeDAP Web Services Specification. For a
description of the data objects described by the DDX object, see Section 2 (page 4) and Section 3 (page 11) .

6.1 DDX

The DDX is an XML representation of the structure of all or part of a data set, as well as a description of the variables
within thatDataset. A data set’s structure is its constituent variables. Each variable, has a name, type, value, zero or
moreAttributesand an optional origin. TheDatasetitself is modeled as aStructurevariable and so has its own set of
Attributesan origin. The values of variables are encoded in the Blob object, and are only indirectly part of the DDX
object.Attributevalues, however, are recorded directly in the DDX. The constraint expression mechanism can be used
to request a DDX that does not contain anyAttribute information (see Section 7 on page 41)

The DDX is intended to be a way for client programs to both learn about the contents of a data source and then to
access some or all of the information held by that data source. It is possible to ask a DAP server to send a DDX
which describes only a portion of the data source’s complete content (e.g., to send only one variable within the data
source and to limit that to only the first 100 by 100 elements (see Section 4 (page 12) for information about constraint
expressions). In normal operation a client program will ask a server for the DDX for an entireDataset, determine the
variables in which it is interested and then request a second DDX that contains only those variables using a constraint
expression. It will ignore the Blob reference in the first DDX and use the Blob in the second to access the values it
wants.

When clients access the information held in a data source’s variable, they do so using the Blob. It is the Blob which
is used to transfer that information from the data source, via a server, to the client. A DDX provides descriptive
information about the data source, the names, types andAttributesheld by the data source. The DDX also provides a
reference to the Blob that holds that information. When a client requests the DDX for an entire data source, it is sent a
DDX which contains a reference to the Blob which, in turn, will return the values of the all the variables. The client is
under no obligation to access a Blob and the server need not ‘create’ it. The server’s contract is simply that, if asked,
it will return the Blob.

11Sometimes the persistent representation is called thenetwork representation.

18

It is possible, using the constraint expression, to ask a data source to return a DDX which contains noAttribute
information. Each DDX holds not only the name and type of each variable, but also itsAttributes. Attributesdo not
have their values accessed using a separate document/object as variables do; their values are included in the DDX. If
a client is to make several requests from a single data source, it is important to avoid the needless repetition of the
Attribute information.

Example 1:

Here is an example DDX which contains a single two dimensional array. TheDatasetalso contains a single global
Attribute:

<Dataset name="fnoc1.nc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.opendap.org/ns/OPeNDAP"
xsi:schemaLocation="http://www.opendap.org/ns/OPeNDAP

http://dods.coas.oregonstate.edu:8080/opendap/opendap.xsd" >

<Attribute name="Description" type="String">
<value>Fleet Numerical Wind Data</value>

</Attribute>

<Array name="u">
<Attribute name="long_name" type="String">

<value>U_Wind_Vector</value>
</Attribute>

<Float32/>

<dimension size="16" name="latitude">
<dimension size="17" name="longitude">
<dimension size="21" name="time">

</Array>

<Blob URL="http://dcz.opendap.org/dap/data/nc/fnoc1.nc?u"/>
</Dataset>

NOTE: Each of the XML elements used to declare a variable has aname attribute. The XML Schema (the
rigorous definition) for the syntax of the XML document declares that thename attribute is optional. In
practice this is not the case, with one exception. Consider that, without a name, there is no way for a
client to ask for a variable. The only exception to this is the template variable for anArray. EachArray
has a single child element which declares the type of theArray. Naming the child element is redundant
(see Section 6.3.2 on page 20), and if named the name will be ignored.

6.2 XML Schema

The syntax and rules for the DDX document are encapsulated (to the extent possible) in an XML schema. The XML
schema language is not adequate to completely define and enforce the rules for the DDX. The description of the DDX
elements in Section 6.3 (page 20) constitutes the complete list of rules and syntax for the DDX.

6.2.1 XML Schema Validation

The XML schema is used to validate DDX documents as part of parsing them into memory resident software entities.
The act of validating an instance of the DDX against the schema guarantees that the DDX will fulfill all of the syntax
rules encapsulated in the schema, thus allowing subsequent software in the processing chain to take as “true” a large
number of facts about the content and structure of the instance of the DDX document.

OPeNDAP servers MUST validate their DDX documents before sending them in response to a request. OPeNDAP
clients MAY validate the returned DDX document, but this is seen as non-essential as the servers should be providing
correct DDX instances.

19

6.3 DDX XML Elements

This section contains the detailed syntax descriptions of all of the component elements of a DDX.

6.3.1 Alias

This element creates a second name for some dataset variable. References to theAlias will produce the same results
as reference to theAlias target identified in thesourceattribute. See Section 2.4 (page 10) .

The following Alias declaration creates a second name for a variable namedpepper, part of a structure named
spice. With this declaration in place, you can refer to the same value with three different names:/spice/pepper,
/spice/poivre and/goeswithsalt.

<Dataset name="test">
<Structure name="spice">

<Float64 name="pepper"/>
<Alias name="poivre" source="/spice/pepper"/>

</Structure>
<Alias name="goeswithsalt" source="/spice/pepper"/>

</Dataset>

Element attributes:

name [Required] The name of theAlias.

source [Required] The name of the variable to which thisAlias refers (thetargetvariable). The name given here
MUST be afully qualified name(See Section 2.3.2 on page 10) and MAY NOT refer to a member variable of a
Sequence. Similarly , if theAlias is member of aSequence, then it MAY NOT refer to a variable outside of it’s
parentSequence. See Section 2.4 (page 10) formore details.

role [Conditional] The role that theAlias will play as a member of aGrid. The only acceptable values arearray
andmap. This attribute MUST used if theAlias is a member variable of aGrid, either theArray or theMap.
This attribute MAY NOT be used if theAlias is not a member element of aGrid. See Example 13 on page 29
and Example 14 on page 29 for usage examples.

origin [Conditional] Themodifier that added thisAlias to the document. Used only if this element was added in
conjunction with aProcessing Attribute. See Section 3.2 (page 12)

Child elements: None.

6.3.2 Array

Declares anArray variable. See Section 2.2.1 (page 7) for a description ofArrays.

Element attributes:

name [Required] The name of theArray.

origin [Conditional] Themodifier that added thisArray to the document. Used only if this element was added in
conjunction with aProcessing Attribute. See Section 3.2 (page 12)

Child elements:

dimension[Required] Eachdimensionelement corresponds to a dimension of theArray. The order of thedimension
elements indicates the order of the dimensions of theArray. As is the case with ANSI C[13] and C++[14], the
rightmost/last dimension varies fastest. At least onedimensionelement is REQUIRED; there is no upper bound
on the number of dimensions.

Attribute[Optional] TheAttributesfor thisArray.

20

Template variable declaration[Required] AnArray MUST have onetemplate variablewhich MAY be any type with
the exception that it MUST NOT be anAlias, anEnumeration, or anArray itself. Thenameattribute of the
template variableis OPTIONAL, and in fact will be ignored if used. The name of theArray is defined by the
nameattribute of theArray element. The template variable is not directly accessible through the data model.

Child element syntax:

• Zero or moreAttributesfollowed by
• One template variable element followed by
• One or moredimensionelements.

Here is an array of structures:

Example 2:<Array name="time_series">
<Structure>
<Float64 name="X_velocity"/>
<Float64 name="Y_velocity"/>

</Structure>
<dimension size="72"/>

</Array>

6.3.3 Attribute

Use this element to attachAttributevalues to a variable. Every variable MUST have a name, type, and value. Beyond
that, it can have an arbitrary number ofAttributes. See Section 3 (page 11) for more detail about whatAttributesare
and how they are used.

If a variable element hasAttribute elements, then theAttribute elements MUST immediately follow the variable
element opening tag.

An Attribute MAY contain multiple values of the same type (in essence a 1-dimensional array), or it MAY contain
otherAttributes. It MAY NOT contain both values andAttributes.

In other words: AnAttributeMAY contain 1 or more homogeneously typed value elements, OR it MAY contain 1 or
moreAttributeelements. Example 3 on page 22 contains a syntax example ofAttributes.

Attribute Aliases

Attributeelements MAY have a type ofalias. An alias typedAttributeMAY refer to any otherAttributein the dataset.
If an Attribute is of typealias it’s XML declaration MUST have asourceattribute whose value is thefully qualified
namein the dataset of theAttribute to which thealias refers. See Section 2.3.2 (page 10) . There are specific rules
for encoding the value of thesource attribute. Rules for encoding the value of the source attribute MUST be applied
prior to encoding the content for it’s XML representation. See Section 6.4 (page 35) for the details of this encoding.

Example 4 on page 23 contains a syntax example foralias typedAttributes.

Processing Attributes

Attributeelements MAY have a type ofmodifier. Attributesof typemodifierMUST be global (exist at the top level
of the Dataset) and MAY not be used as members of otherAttributesor of other variableAttribute structures. See
Section 3.2 (page 12)

Attributesof typemodifier MUST contain the following elements:

origin server An Attributeof typeURL whose name MUST beorigin server and whose value is theURL for the
original data source.

organization An Attributeof typeStringwhose name MUST beorganization and whose value MUST be the name
or the description of the organization that is providing the modified data.

modifying service An Attributeof typeURL whose name MUST bemodifying service and whose value MUST
be the URL of the service that introduced the changes.

21

A syntax example of amodifier typedAttributecan be found in Example 5 on page 23.

Element attributes:

name [Required] A string containing the name of theAttribute.

type [Required] The type of thisAttribute’s value. This MUST be one of the following:

• Boolean
• Byte
• Int16
• UInt16
• Int32
• UInt32
• Int64
• UInt64
• Float32
• Float64
• String
• URL
• modifier
• alias
• structure

An Attribute of type structure has a syntax comparable to that of aStructurevariable. Binary Imagesand
Enumerationsare not permittedAttributetypes.

source [Conditional] A string containing the name of the sourceAttribute for an Attribute of typealias. Used
only of theAttribute is of typealias.

origin [Conditional] Themodifier that added thisAttributeto the document. Used only if this element was added
in conjunction with aProcessing Attribute. See Section 3.2 (page 12)

Child elements:

value[Conditional] One or more childvalueelements, allowed ONLY if there are no childAttributeelements.

Attribute[Conditional] One or more childAttributeelements, allowed ONLY if there are no childvalueelements.

Child element syntax:

• One or moreAttributeelements
OR
• One or morevalueelements

Example 3:

Here are examples of theAttributeelement syntax.

22

<Dataset name="test" >
<Structure name="measurement">

<Attribute name="date" type="String">
<value>18 Mar 03</value>

</Attribute>
<Attribute name="other" type="Structure">

<Attribute name="satellite_name" type="String">
<value>GOES</value>

</Attribute>
<Attribute name="experiment number" type="int32">

<value>986743</value>
</Attribute>
<Attribute name="team" type="String">

<value>Baker</value>
<value>Charlie</value>
<value>Dogg</value>

</Attribute>
</Attribute>
<Float64 name="value">
<Array name="time_series"

<dimension size="32">
</Array>

</Structure>
</Dataset>

Example 4:

This example shows the use ofalias typedAttributes.

<Dataset name="test" >
<Structure name="measurement">

<Attribute name="team" type="structure">
<Attribute name="lead engineer" type="String">

<value>Chet Baker</value>
</Attribute>
<Attribute name="software engineer" type="String">

<value>Charlie Parker</value>
</Attribute>
<Attribute name="electrical engineer" type="String">

<value>Ozzy Osbourne</value>
</Attribute>

</Attribute>
<Float64 name="value">
<Array name="time_series">

<Attribute name="author"
type="alias"
source="/measurement/team/software engineer" />

<dimension size="32">
<FLoat32/>

</Array>
</Structure>

</Dataset>

Example 5:

In this example of the use of amodifier Attribute, the AIS server at ais.gso.uri.edu added a variable calledsst, and
anAttributecalled ”units” to the variable calledDepth.

23

<Dataset name="test">
<Attribute name="helena" type="modifier">

<Attribute name="origin_server" value="http://dods.gso.uri.edu/cgi/nph-nc"/>
<Attribute name="modifying_service" value="http://ais.gso.uri.edu"/>
<Attribute name="organization" value="URI/GSO"/>

</Attribute>
.
.
.

<Float64 name="Depth">
<Attribute name="units" type="String" origin="helena">

<value>meters</value>
</Attribute>

</Float64>
.
.
.

<Array name="sst" origin="helena">
.
.
.

</Array>
</Datset>

6.3.4 Binary

Declares aBinary Image. This is an atomic type of arbitrary size with an undeclared internal structure. See Sec-
tion 2.1.6 (page 6) .

The size of a binary image is encoded in the Blob object, so declaring it in theBinary element is optional. For a
constructor which holdsBinary Images, declaring the size here is a convenience for clients and is OPTIONAL. Doing
so can increase the efficiency of clients who have to deal with the data after downloading it. If the size of aBinary
Imagewhich appears in a Constructor type such asSequenceis declared, all instances MUST be that size.

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

size [Optional] The size of the image, in bytes.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisBinary Image.

Child element syntax:

• Zero or moreAttributeelements

Example 6:<Binary name="sound_sample" size="17256"/>

6.3.5 Blob

This is the reference to the serialized binary data content described by this DDX. See Section 6.5 (page 36) .

Element attributes:

24

URL [Required] A string containing the web address of the Blob object associated with this DDX.

Child elements: None

See Example 1 on page 19.

6.3.6 Boolean

A variable that takes on one of two values:true or false. See Section 2.1.2 (page 5) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisBoolean.

Child element syntax:

• Zero or moreAttributeelements

Example 7:<Boolean name="QC">
<Attribute name="long_name" type="String">
<value>Quality Control Flag</value>

</Attribute>
</Boolean>

6.3.7 Byte

Declaration of an eight-bit unsigned integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisByte.

Child element syntax:

• Zero or moreAttributeelements

Example 8:<Byte name="Temperature">
<Attribtue name="units" type="String">
<value>Counts</value>

</Attribute>
</Byte>

25

6.3.8 Dataset

A Datasetelement contains all the variable and global attribute for a data source. The DDX always contains aDataset
element as its root. ADatasetelement is semantically equivalent to theStructurevariable; the rules for encoding the
variables in aStructureapply to the variables at the top level of theDatasetelement. See Section 2.2.2 (page 8) for
information about the semantics of aStructure. See Section 3 (page 11) about global and otherAttributes.

Element attributes:

name [Required] A string containing the name of the variable.

xmlns [Required] A URI containing the default namespace declaration for the XML content of theDatasetdocu-
ment. At the time of this writing this value should behttp://www.opendap.org/ns/OPeNDAP

xmlns:xsi [Required] Maps the namespace identifierxsi to the URI provided in the value. In this case it should
always be set tohttp://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation [Required] Should be set to a pair values containing the default namespace URI followed
by a URL that when dereferenced will provide the schema for the namespace. The schema location URL will
typically be set to a location on the server that is providing theDatasetdocument.

origin [Conditional] The “modifier” that created thisDataset. This would be used to indicate that theDataset
was created by an Aggregation Server of some sort. Used only if this element was added in conjunction with a
Processing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisDataset.

Variable Element Declarations[Required] The collection of variables present in the dataset

Child element syntax:

• Zero or moreAttributeelements; followed by
• One or more variable elements; followed by
• One Blob element

See Example 1 on page 19.

6.3.9 dimension

This element appears withinArray andMapdeclarations, and declares the length (and possibly the name) of a dimen-
sion. For multidimensionalArrays or Maps, the firstdimensionelement corresponds to the left-mostArray or Map
index,et cetera.

Element attributes:

name [Optional] A string containing the name of the dimension.

size [Required] The number of elements in the dimension under consideration.

Child elements: None.

See Example 2 on page 21.

26

6.3.10 Enumeration

An Enumerationis used to bind symbols to a set of discrete integral values. Each element of anEnumerationis called
anenumerator.

Element attributes:

name [Required] A string containing the name of the variable.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute.

Child elements:

enum[Required] Used to hold a discrete value of theEnumeration. EachEnumerationMUST have at least oneenum
element.

Attribute[Optional] TheAttributesfor thisEnumeration.

Child element syntax:

• Zero or moreAttributeelements; followed by
• One or moreenumelements

Example 9:<Enumeration name="error_codes">
<enum name="no_such_file" value="0"/>
<enum name="insufficient_permissions" value="1"/>
</Enumeration>

6.3.11 enumerator

This element holds a single enumerator for anEnumerationelement.

Element attributes:

name [Required] The name of thisenumerator.

value [Required] The integral value of thisenumerator. Limited to4, 294, 967, 296 values (232).

Child elements: None.

See Example 9.

6.3.12 Float32

Declares an IEEE 754 conformant data variable to hold a 32-bit floating-point value. See Section 2.1.4 (page 6) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisFloat32.

Child element syntax:

• Zero or moreAttributeelements

Example 10:<Float32 name="Temperature"/>

27

6.3.13 Float64

Declares an IEEE 754 conformant data variable to hold a 64-bit floating-point value. See Section 2.1.4 (page 6) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisFloat64.

Child element syntax:

• Zero or moreAttributeelements

Example 11:<Float64 name="Temperature">
<Attribtue name="units" type="String">
<value>Degrees_Kelvin</value>

</Attribute>
</Float64>

6.3.14 Grid

Declares aGrid variable (see Section 2.2.3 on page 8). This is comparable to anArray (in fact it contains anArray),
but there is somewhat more freedom in assigning coordinates to any point in theArray. Unlike anArray, aGrid can
be indexed using types other than integers. The mapping between different values and discrete elements of theGrid
is given by theMaps. Within aGrid the correspondence between any dimension of theGrid’s targetArray and aMap
is made by insuring that corresponding targetArray dimensions andMap dimensions have the same name and size.
A Map is a type of anArray and so has its own dimension element, which MUST be named, and this name is used
to create the binding of theMap to a dimension of theGrid’s targetArray with the same name. While the naming of
the dimensions establishes the relationship betweenMapsandArray components in aGrid, the dimensions MUST be
the same size in order for the mapping to be complete. If two dimensions in aGrid of the same name do not have the
same size an error will be generated.

In order to accommodate the re-use of the components of aDatasetand streamline the transmission of data by through
redundancy reduction both the targetArray and theMap elements of aGrid MAY be replaced with anAlias variable.
In both cases theAlias MUST refer to anArray type (either anArray or aMap) somewhere else in theDataset. The
rules about naming and size for the constituent dimensions of theGrid components will be evaluated against the source
of theAlias reference as if they where actually components of theGrid. (see the comments in Example 12 on page 29,
Example 13 on page 29, and Example 14 on page 29).

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisGrid.

Map [Required] The maps for thisGrid. These can be thought of as the independent variables for theGrid’s Array.
There MUST be at least one map and no more thanN whereN is the rank of theGrid’s Array.

28

Child element syntax:

• Zero or moreAttributeelements; followed by
• Zero or oneArray element; followed by
• Zero or moreMapelements; followed by
• Zero or moreAliaselements.

Each dimension of the targetArray MUST have one or more correspondingMapsdimensions of the same name and
size. If aMap has multiple dimensions, then each one MUST be a validMap dimension for one of the dimensions in
the targetArray. An Alias that refers to anArray of the correct size and shape MAY replace any or all ofMapelements
and/or theArray element.

Here’s aGrid containing a two-dimensional target array and two one-dimensional map arrays.

Example 12:

This example shows a typicallyGrid. All of the Grid components, the targetArray and theMaps, are declared as
members of theGrid element.

<Grid name="v">
<Array name="temp">

<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
<Map name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

<Map name="x">
<Float64/>
<dimension size="5" name="lon"/>

</Map>
</Grid>

Example 13:

This example shows aGrid where the targetArray element is actually anAlias to anArray outside of theGrid element.

<Array name="temp">
<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
<Grid name="v">

<Alias name="sst" source="/temp" role="Array" />
<Map name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

</Map>
<Map name="x">

<Float64/>
<dimension size="5" name="lon"/>

</Map>
</Grid>

Example 14:

This example shows aGrid where all of the member elements (the targetArray and theMaps) are actually anAliases
to aArraysoutside of theGrid element.

29

<Array name="temp">
<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
< Array name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

</Array >
< Array name="x">

<Float64/>
<dimension size="5" name="lon"/>

</Array >
<Grid name="v">

<Alias name="sst" source="/temp" role="Array" />
<Alias name="NS" source="/y" role="Map" />
<Alias name="EW" source="/x" role="Map" />

</Grid>

6.3.15 Int16

A 16-bit signed (twos-complement) integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor this Int16.

Child element syntax:

• Zero or moreAttributeelements

Example 15:<Int16 name="Temperature"/>

6.3.16 Int32

A 32-bit signed (twos-complement) integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor this Int32.

Child element syntax:

• Zero or moreAttributeelements

Example 16:<Int32 name="Temperature"/>

30

6.3.17 Int64

A 64-bit signed (twos-complement) integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor this Int64.

Child element syntax:

• Zero or moreAttributeelements

Example 17:<Int64 name="Temperature"/>

6.3.18 Map

This declaration creates aMap used in aGrid. See Section 2.2.3 (page 8) for a description ofGrids. Also see
Example 12 on page 29, Example 13 on page 29, and Example 14 on page 29. AMap is a special case of the Array
element; it has the sameAttributesand child elements but MAY only appear inside aGrid.

Element attributes:

name [Required] A string containing the name of theMap variable. The relationship between the dimension(s) of
theMap and the targetArray of theGrid is established through the names of theMap dimensions. The name
of theMap is not used to establish the relationship, but should be used in some informative manner for the user.
See Example 12 on page 29.

Child elements:

dimension[Required] Eachdimensionelement corresponds to a dimension of theMap. The order of thedimension
elements indicates the order of the dimensions of theMap. As is the case with ANSI-C[13] and C++[14], the
rightmost/last dimension varies fastest. At least onedimensionelement is REQUIRED; there is no upper bound
on the number ofdimensionelements

Attribute[Optional] TheAttributesfor thisMap.

Template variable declaration[Required] AMapMUST have onetemplate variablewhich MAY be any type except
that it MUST NOT be anAlias or anArray itself. Thenameattribute of thetemplate variableis optional, and
in fact will be ignored if used. The name of theMap is defined by thenameattribute of theMap element. The
template variable is not directly accessible through the data model.

Child element syntax:

• Zero or moreAttributesfollowed by
• One templatevariableelement followed by
• One or moredimensionelements.

31

6.3.19 Sequence

A Sequenceis an ordered set of entries, each instance of which is comparable to aStructurevariable. Each entry in
a Sequencecontains the same set of variables. ASequencecan also be thought of as a relational database table, with
each entry corresponding to a single row.

See Section 2.2.4 (page 9) for a description of theSequencetype.

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisSequence.

Variable declaration[Required] ASequenceMUST have one or moreVariable declarations. They MAY be any type
of variable.

Child element syntax:

• Zero or moreAttributes; followed by
• One or morevariableelements

Example 18:<Sequence name="gallimaufry">
<Float64 name="measurement"/>
<Array name="measurement_collection">
<Int16/>
<dimension size="32">
<dimension size="45">

</Array>
</Sequence>

6.3.20 String

A series of Unicode (UTF-8) characters. See Section 2.1.5 (page 6) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisString.

Child element syntax:

• Zero or moreAttributes

Example 19:<String name="Name"/>

32

6.3.21 Structure

An ordered set of variables. See Section 2.2.2 (page 8) for a description.

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisStructure.

Variable declaration[Required] AStructureMUST have one or moreVariable declarations. They MAY be any type
of variable.

Child element syntax:

• Zero or moreAttributes; followed by
• One or morevariable declarations

Example 20:<Structure name="person">
<String name="name">
<Float64 name="height">
<Int32 name="age">

</Structure>

6.3.22 UInt16

An unsigned 16-bit integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisUInt16.

Child element syntax:

• Zero or moreAttributes

Example 21:<UInt16 name="Temperature"/>

6.3.23 UInt32

An unsigned 32-bit integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

33

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisUInt32.

Child element syntax:

• Zero or moreAttributes

Example 22:<UInt32 name="Temperature"/>

6.3.24 UInt64

An unsigned 64-bit integer. See Section 2.1.1 (page 4) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisUInt64.

Child element syntax:

• Zero or moreAttributes

Example 23:<UInt64 name="Temperature"/>

6.3.25 Url

A variable which contains a URL. AURL MUST only contain characters that are legal parts of an internet URL.
Currently, this is limited to single-byte US-ASCII (7-bit) characters. See Section 2.1.5 (page 6) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisUrl .

Child element syntax:

• Zero or moreAttributes

Example 24:<URL name="SST_data_server"/>

34

6.3.26 Time

A variable which contains an ISO 8601 time string[12]. ATimecan contain only characters that legal for an ISO 8601
time string. Currently, this is limited to single-byte US-ASCII (7-bit) characters. See Section 2.1.5 (page 6) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element is
being used as thetemplate variable declarationfor anArray.

origin [Conditional] Themodifier that added thisBinary Imageto the document. Used only if this element was
added in conjunction with aProcessing Attribute. See Section 3.2 (page 12) .

Child elements:

Attribute[Optional] TheAttributesfor thisTime.

Child element syntax:

• Zero or moreAttributes

Example 25:<Time name="Sample_time"/>

6.3.27 value

Use this tag to identify the value of anAttributeelement. See Example 3 on page 22.

Variable values are recorded in the Blob object, whileAttributevalues are recorded directly in the DDX. This means
thatAttributevalues MUST be able to be represented in a text file.

Element attributes: None.

Child elements: None.

Example 26:<value>3.1415</value>
<value>2.718</value>

6.4 Encoding Rules

[This section is a first stab, we expect that as we implement code to support this specification we will have to change
(and add to) the Encoding Rules.]

There are several encoding schemes that need to be applied to various XML components of the DAP. At the end of the
list is the encoding for XML. Other encodings MUST be applied to different parts of the DDX.

6.4.1 Attribute and variable Alias source attribute encoding

Thesource attribute a variableAlias and thesource attribute of anAttributeof typealias are bothfully qualified
names. Sincefully qualified namesuse the slash (“/”) character as the delimiter between variable (andAttribute)
names it is necessary to specially identify this character when it appears as part of a legitimate variable (orAttribute)
name in the DDX document (which must eventually be parsed by software). This identification is called “escaping the
character”, and is achieved by using a different character that will be interpreted to have the meaning of “escape”. The
backslash (”\”) is the escape character. The the slash (“/”) and backslash (”\”) MUST be escaped if they appear as
part of a node name in the absolute path. This encoding must applied prior to any additional encoding needed to make
the representation XML compatible, and must persist after XML decoding.

35

6.4.2 Project element variable encoding

This is probably the same as Section 6.4.1 (page 35) .

6.4.3 Select element target encoding

This is probably the same as Section 6.4.1 (page 35) .

6.4.4 Base 64 Attribute value encoding

In order to decrease the total number of bytes in a DDX response it is possible that we may choose to transmitAttribute
values in their serialized binary form (see Section 6.5 on page 36). To do so, and still include them in the DDX, we
will have to encode them into a form that allows them to be represented as UTF-8. Most likely this will achieved by
using a base-64 encoding.

6.4.5 XML document encoding

After all of the previous encodings have been applied to the appropriate parts for the document the document must be
brought into a correct encoding for XML. This means that any content (as opposed to XML syntax characters) must
be so encoded. This includes the values of XML element attributes and the content of XML elements. This encoding
is minimally:

• The< (less than) character is replaced with <

• The> (greater than) character is replaced with >

• The & (ampersand) character is replaced with &

• The ’ (apostrophe) character is replaced with '

• The ” (double quote) character is replaced with "

And may in fact be more extensive. See [?] for more detailed information.

6.5 Blob

The Blob contains the serialized data represented by the DDX. XML documents like the DDX cannot efficiently
transmit binary data [?], so a DAP DDX simply references an object that contains the data described in the DDX. The
Blob is a way of accessing the data ‘out-of-band’ with respect to the DDX. In addition to eschewing the problems of
processing large volumes of binary data with an XML parser, out-of-band access enables servers to support streaming
in conjunction with protocols such as SOAP[?].

Data values associated with variables appear in the Blob in the order in which the variables are declared in the associ-
ated DDX. The DDX always contains aDatasetelement as its root. ADatasetelement is semantically equivalent to
theStructurevariable; the rules for encoding the variables in aStructureapply to the variables at the top level of the
Datasetelement.

The Blob isnot self-documenting. A client program will be unable to make sense of it without the declarations in the
accompanying DDX, since the variable types, sizes, and ordering determined from the structure/organization of the
associated DDX.

NOTE: The DDX may be used to define a C++, Java,et c., object which may then be used by a DAP client to
allocate memory for the variables it declares. A DDX which has been created, but before the Blob object
has been received is said to be an ”empty” DDX. After the Blob arrives and its data has been decoded
and parceled out to the memory in the DDX, the DDX is said to be ”full.”

36

6.5.1 Length Specification: Representing lengths of encoded data elements

When values are encoded for transmission, they are often preceded by length information. For example, anArray is
prefixed by the number of elements in theArray. Instead of representing this information in a fixed-size integer data
type, the DAP encodes length information in a way that allows any length to be represented. These are called DAP
Length Specificationsand are defined as follows:

Each byte of the length specification is divided into two parts: the high-order bit indicates whether another
byte follows, and the low-order seven bits provide the length. A two-byte specification of a 500-byte
image would be 10000011 01110100 (0x83 0x74), for example, while a 20-byte image would only need
one byte of length information: 00010100 (0x14). Length specifications can use any number of bytes.

Length Specificationsare used to specify the size of variable length entities throughout the DAP’s XML encoding.

6.5.2 Blob framework and reliable error delivery

The Blob response is a multi-part MIME document[?]. The Blob MUST contain theContent-TypeMIME header and
MUST give the content type asmultipart/mixed. Each part of the multi-part document MUST have aContent-Length
header which indicates the total number of bytes in this part and MUST have aContent-Type MIME header and the
type of that header MUST beapplication/octet-stream or it MUSTtext/plain. Theapplication/octet-stream
indicates that binary data are contained in this part of the document and are to be interpreted as described in Sec-
tion 6.5.3 (page 37) and Section 6.5.4 (page 37) . If the type istext/plain, then the content is assumed to be an
ErrorX document.

The Blob response is encoded using a multi-part MIME document to ensure reliable delivery of error messages if
servers stream responses to clients. A server can iteratively build chunks of the total response and include that in the
Blob as the next part. If an error is discovered, that can be sent instead. A server is free to choose the size for each part
and is free to build Blob responses with only one part.

6.5.3 Atomic Types

The DAP atomic data types are encoded as follows. All data are encoded using big-endian byte order unless that is
modified using the client-server negotiation options described in Section 5.1 (page 17) .

Integer types Signed integers: Twos-complement; unsigned integers: straight binary. TheBooleanandEnumeration
types are sent as unsigned 32-bit integers.12

Floating-Point types IEEE 754

String types Strings: Unicode, UHF-8, prefixed by aLength Specificationindicating the lengthin bytesof the string.
TheURL andTimetypes are limited to US-ASCII characters, prefixed by aLength Specificationindicating the
lengthin bytes.

Binary images A Binary Imageis sent as a sequence of bytes, prefixed by aLength Specificationindicating the length
in bytesof theBinary Image.

6.5.4 Constructor Types

The constructor types are encoded as follows. See above for instructions about how to encode the atomic types.

Array Array members are encoded in row-major order (rightmost subscript varies fastest). TheArray is preceded
Length Specificationindicating the the number ofelements(not the number of bytes) in theArray. The size of
each element MUST be derived from the declaration in the DDX.Arraysof String, URL or Timevalues MUST
include theLength Specification.

12TheBooleantype could conceivably be sent in a single bit, but decoding that may be inefficient for some architectures; if a transport protocol
supports compressions that may achieve the same reduction in size.

37

Structure Members are placed in order of declaration, with no boundary values.Alias variables are omitted. (There
is no place holder for them in the Blob. They are reconstructed using the DDX.)

Grid Grids, which are essentially special cases of theStructuretype, are recorded in the same fashion asStructures.

Sequence Each entry in aSequenceis recorded like aStructure, except that each entry is preceded by a single ”Start-
of-Instance” flag byte (value0x5a), and the entireSequenceis ended with an ”End-of-Sequence” flag byte
(same value:0x5).

For example, a schematic view of the data and flags for the three element sequence:

<Sequence>
<Int32 name="Var1">
<Int32 name="Var2">
<Int32 name="Var3">

</Sequence>

looks like:
<SOI><Var1><Var2><Var3>
<SOI><Var1><Var2><Var3>
<SOI><Var1><Var2><Var3>
<EOS>

For a nested Sequence (a Sequence which contains a Sequence as a child element) such as:

<Sequence>
<Int32 name="Var1">
<Int32 name="Var2">
<Sequence>
<Int32 name="Var3">
<Int32 name="Var4">

</Sequence>
</Sequence>

the schematic representation looks like:

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>
<EOS>

Note that the outer sequence has three instances and each of those includes the inner Sequence.

38

6.6 ErrorX

The ErrorX object is an XML document containing information about any errors that may have been encountered by
the server while processing a request. For any request, a server MAY return an ErrorX response in place of the normal
response (e.g., instead of the DDX).

The ErrorX object MUST contain:

Offending request information This is the complete URL, including payload (constraint expression), or the POST
data in effect at the time. The intent is that there should be enough information to reproduce the error.

Text messageA description of the problem.

The ErrorX object is an XML document used to signal a DAP client that the server has encountered an error of some
kind.

6.7 ErrorX XML Elements

An ErrorX object can contain the following XML elements.

6.7.1 Error

Describes the type of error encountered. The element MUST contain a short text description with thedescription
attribute, OR a longer description enclosed.

Element attributes:

code A number, from a set of well know error numbers, associated with this error. See Appendix Section B (page 46)
for a list error numbers and their meanings. [required]

Child elements:

request[Required] Contains the Base URL given that triggered the error.

description[Optional] Contains a short description of the error condition.

constraint[Optional] Contains the constraint condition of the request that triggered the error. This is a string con-
taining an index value corresponding to the index value of theConstraintelement.

Child element syntax:

• Onerequestelement; followed by
• Zero or Onedescriptionelement; followed by
• Zero or Oneconstraintelement

Example 27:<Error code="404">
<description>Not found</description>
<request>http://dods.org/data.nc</request>
<constraint>\emph{huh? What is the index element stuff?}</constraint>

</Error>

6.8 Server Capabilities Document

NOTE: We’re going to be careful about the name ’Capabilities’ since OpenGIS may have trademarked that.
10/21/03 jhrg

A DAP server MUST be equipped to respond to a client request for an XML document describing the characteristics
and capabilities of that server.

39

The Server Capabilities Document MUST contain information about the DAP version. It MAY contain software im-
plementation version information. The Server Capabilities Document MUST contain a description of ANY constraint
expression function which is intended to be publically accessible (servers are free to include constraint expression
functions for internal/experimental use and not document them).

6.9 Server Capabilities Document XML Elements

The XML syntax of the returned capabilities document is as follows:

6.9.1 Description

Use this element to include documentation too long to include as an attribute to theFunctionelement.

Element attributes: None.

Child elements: None.

6.9.2 Function

Use theFunctiondeclaration to identify a function a client program can use in a constraint expression. The server
identifies any part of the constraint expression that looks likefunction(arg1,arg2,arg3) as a function. If a
function has no arguments, an empty set of parentheses MUST be included.

If the Functionelement has arguments, their declarations will be contained in its declaration. There should also be a
text description of the Function. Short descriptions MAY be included as a Function attribute, while longer ones MAY
be included in aDescriptionelement in theFunctionbody.

Element attributes:

name [Required] A string identifying the name of the function. You should try to pick a name unlikely to cause
confusion. The best idea is to pick a brief acronym with which to identify your server or project, and prefix all
function names with those letters. That is, don’t call your new functionexp(). Instead call it something like
GDSexp().

type [Required] The type of data returned by the function. This is one of the DAP data types (Section 2 on page 4).
Functions to be used in the selection clause of a constraint expression should returnBoolean.

Child elements:

Description[Optional] Used to provide a detailed description of the function.

Parameter[Optional] Used to describe an input parameter for the function.

Child element syntax:

• Zero or oneDescription; followed by
• Zero or moreParameters

6.9.3 Parameter

Use theParameterelement to list the arguments (in order) needed by this function.

Element attributes:

name [Optional] A name by which to refer to (formal) parameter. This is a documentation convenience, and there is
no default value.

40

type [Required] The type of the parameter. This is one of the DAP data type names (Section 2 on page 4). Note
that the value of thetype attribute is just the name of the type (e.g., Grid, Array, et c.) and does not include
information about the size of an Array or the names of the fileds in a Structure. Because it simplies the interface
to a function, it is possible to use the special wordsSimpleType andAnyType in place of one of the DAP type
names. The wordSimpleType means that the actual parameter MAY be of any of the atomic types. The word
AnyType means that the actual parameter MAY be of any of the DAP data types.

repeats [Optional] If present and assign the valuetrue, this attribute indicates that the parameter MAY appear
once or any number of times greater than once. If not present the parameter MUST appear once.

description [Optional] A brief text description of this argument. This is a documentation convenience, and there
is no default value.

Child elements: None.

Example 28: <Function name="average" type="Float64">
<description>This function averages a group of Float64
values.</descritpion>
<parameter type="Float64" repeats="true"/>

</Function>

Example 29: <Function name="mean" type="Float64">
<description>This function averages a group of values;
it is more liberal about its arguments than average. It will return an
ErrorX if called with non-numeric actual parameters.</descritpion>
<parameter type="SimpleType" repeats="true"/>

</Function>

6.9.4 Version

TheVersionelement indicates the version of some entity associated with the server in question. The Server Capabilities
Document response MUST contain the version of the DAP; other version elements MAY be used to include the
versions of other things (such as implementation software). Note that the versions of specific data sources SHOULD
be included in theAttributesfor those data sources, not in the version inforamtion returned here.

Element attributes:

value [Required] A string containing the version number or name.

entity [Required] A string containing the name of the specification/standard, software or data source to which this
Versionelement refers. The stringDAP is reserved to refer to the DAP and indicates the version of the protocol,
not the implementation. Any other value is at the discretion of the software implementor (for software version)
or server administrator.

Child elements: None.

Example 30: <Version entity="DAP" value="4.0"/>
<Version entity="OPeNDAP_netCDF_server" value="6.4"/>

7 Constraint

The DAP uses a singlerequest documentto supply information to a server about a request for data. Recall in Section 4
(page 12) that the DAP uses constraint expressions to limit data accessed to specific variables, or parts of variables, in
aDataset.

Each constraint is broken into two clauses, theprojection clauseand theselection clause. Each of the clauses is
further broken down into sub-clauses. A projection clause is simply a collection of one or moreProjectelements, and

41

a selection clause consists of one or moreSelectelements. If noProjectelements are present (the projection clause is
omitted), the server will assume that all the variables in the dataset are to be returned. If the selection clause is omitted,
all instances (values) of the variables specified in the projection are returned.

It is reasonable to for theConstraintelement to be empty, as this will cause the server to return the complete description
(DDX) for the Dataset. From this the user would typically form theprojection clausesandselection clausesto
constrain the information. A second request would then follow, this time with a more complexConstraint.

A client can ask the server to omit theAttribute information from a DDX by adding aNoAttributeselement to the
Constraint. See Section 7.2 (page 44) for examples.

7.1 Constraint XML Elements

Following is a description of each element used in a constraint expression.

7.1.1 Constraint

This element contains the two component clauses of the constraint expression: the projection and the selection. The
projection clause specifies which variables are to be returned, and the selection clause helps select among the variable
values. See page 12.

Element attributes:

name [Required] An identifying string for the constraint expression.

Child elements:

NoAttributes[Optional] Informs server to strip allAttribute information from the returned DDX.

Project [Optional] Identifies a variable to be returned the client. See Section 7.1.4 (page 43)

Select[Optional] Specifies what conditions need to be met for an instance of the set of projected variables to be
returned to the client. See Section 7.1.5 (page 44)

Child element syntax:

• Zero or oneNoAttributeselement; followed by
• Zero or moreProjectelements; followed by
• Zero or moreSelectelements

See Section 7.2 (page 44) for examples of complete constraint expressions.

7.1.2 Hyperslab

Use this element to measure off a rectangular subsection (sometimes called ahyperslab) of aGrid, Array, orSequence
variable. See Section 4 (page 12) . There MUST be only oneHyperslabelement for each dimension of theGrid. If a
Hyperslabelement is missing, that dimension will be returned whole. See Example 34 on page 44.

A singleHyperslabelement MAY also be used to subsample aSequence.

Element attributes:

dimension [Optional] The name of the dimension to sample with the parameters given in thisHyperslabelement.
This only applies toGrid variables orArrayswith named dimensions. If the name is omitted, the order of the
Hyperslabelements will be assumed to be the same as the order of the variable dimension declarations.

start [Optional] The first index to return. If omitted, zero is assumed.

stop [Optional] The last index to return. If omitted, the dimension maximum is assumed.

42

stride [Optional] Use thestride to skipGrid rows (or columns or hyperslabs). Astrideof two returns every other
row, three returns every third, and so on. If omitted, a value of one is assumed.

Child elements: None.

Example 31: <Constraint>
<Project variable="/temp">

<Hyperslab dimension="time" start="1" stop="100" stride="5"/>
<Hyperslab dimension="depth" start="20" stop="40"/>

</Project>
</Constraint>

7.1.3 NoAttributes

This element is used to eliminate theAttributecontent from the returned DDX. This is intended to be used by clients
making multiple requests of the sameDatasetand thus do not need to have theAttributeelements sent multiple times.

Element attributes: None.Child elements: None.

Example 32:

This constraint expression will return a DDX of the entireDatasetminus anyAttribute information.

<Constraint>
< NoAttributes />

</Constraint>

7.1.4 Project

This element identifies a variable to be returned to the client. This MAY be either a variable in theDataset, or it MAY
be calculated by a server function, whose value is returned as if it were data. Projection functions MUST be identified
in the server’s Server Capabilities Document.

Contains: Zero or moreHyperslabelements.

A Projectelement MUST have one of either avariableor afunctionbut not both.

Element attributes:

function [Optional] A function invocation. The function’s return value (which can take any DAP data type) is
returned to the client.Note: When variables are passed to a function it MUST be done so using theirfully
qualified name. See Section 2.3.2 (page 10) for more onfully qualified names.

variable [Required] Thefully qualified nameof the variable to be returned. See Section 2.3.2 (page 10) for more
on fully qualified names.

Child elements:

Hyperslab[Optional] Describes a sub-sample of aGrid, Array, or Sequencevariable. See Section 7.1.2 (page 42)

Child element syntax:

• Zero or moreHyperslabelements

43

7.1.5 Select

Use this element to define the condition under which aSequenceinstance or aGrid element is to be returned. ASelect
element specifies a relational operation and two operands to compare with it. See Example 33 and Example 35 to see
how to select from aSequenceand aGrid, respectively. Note that theSelectMUST explicitly state to which projected
variable it applies (using thetarget attribute).

Contains: Zero or moreHyperslabelements.

Element attributes:

condition [Required] A relational expression or a function call. In the case of a function call, the function MUST
return aBooleantype. In the case of a relational expression, the syntax MUST be:operand1operatoroperand2

whereoperator is one of:=, ! =, <, <=, >, >=,= and are defined in Table 6. The operandsoperand1 and
operand2 maybe variables of any of the atomic types, including fields, constants, or function calls which return
atomic types.Note: When variables are passed to a function it MUST be done so using theirfully qualified
name. See Section 2.3.2 (page 10) for more onfully qualified names.

target [Required] Thefully qualified nameof the variable with which this selection criterion is to be evaluated.
See Section 2.3.2 (page 10) for more onfully qualified names.

Child elements:

Hyperslab[Optional] Describes a sub-sample of aGrid, Array, or Sequencevariable. See Section 7.1.2 (page 42)

Child element syntax:

• Zero or moreHyperslabelements

7.2 Constraint examples

Example 33:

This constraint expression is a simple request for temperature and salinity from aSequence Dataset. This will return
aSequencecontaining temperature and salinity pairs where all the salinity values are above 34.0.

<Constraint>
<Project variable="/sample/temp"/>
<Project variable="/sample/salt"/>
<Select condition="/sample/salt>34.0" target="sample"/>

</Constraint>

Example 34:

For sub-sampling gridded data, use theProject element to elaborate a projection clause. This constraint expression
subsamples aGrid, and returns a smallerGrid, where thelat dimension has rows 1,3,5,7 and 9 of the originalGrid,
and thelon dimension has all the columns from 20 to 40 from the original.

<Constraint>
<Project variable="/sst">

<Hyperslab dimension="lat" start="1" stop="10" stride="2"/>
<Hyperslab dimension="lon" start="20" stop="40"/>

</Project>
</Constraint>

Example 35:

It is also possible to select from aGrid, based on the values of the map arrays. This constraint expression shows
the selection of aGrid calledsst. Assumingsst is a two-dimensional array with two one-dimensional maps, this
constraint will return aGrid where all thelat values are above 24.0 and all thelon values are below -50.0. In addition
this constraint expression requests that noAttribute information be sent in the returned DDX.

44

<Constraint>
<NoAttributes />
<Project variable="/sst"/>
<Select condition="/sst/lat>24.5" target="sst"/>
<Select condition="/sst/lon<-50.5" target="sst"/>

</Constraint>

Example 36:

This constraint expression exercises theProject Functionmake-sst.

<Constraint>
<Project function="make-sst(/raw-count, 223)"/>

</Constraint>

References

[1] H. Alvestrand. IETF policy on character sets and languages. RFC 2277.

[2] Ken Arnold and James Gosling.The Java Programming Language. Addision Wesley, Reading, Massachusetts,
1996.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (URI): Generic syntax. RFC 2396.

[4] C.J. Date.An Introduction to Database Systems. Addison Wesley, Reading, Massachusetts, 2000.

[5] Oliver Dubuisson.ASN.1: Communication Between Hetergeneous Systems. Morgan Kaufmann, San Francisco,
California, 2001.

[6] International Organization for Standardization. ISO 8601:2000. http://www.iso.org/, seach for ’8601’, 2000.
Accessed 13 October 2003 on the World Wide Web.

[7] NCSA. HDF 4.1r3 user’s guide. http://hdf.ncsa.uiuc.edu/UG41r3html/, 1999. Retrieved from the World Wide
Web 13 October 2003.

[8] NCSA. HDF5 - a new generation of HDF. http://hdf.ncsa.uiuc.edu/HDF5/, 2001. Retrieved from the World
Wide Web 15 December 2002.

[9] Russ Rew, Glenn Davis, and Steve Emmerson.NetCDF User’s Guide. Unidata Program Center, Boulder,
Colorado, April 1993. Version 2.3.

[10] Tom Sgouros, James Gallagher, and Peter Cornillon. Place holder for our paper on the dap 3 and syntacitc
versus semantic metadata.Irreproducible Results, 0(0):0–0, 2004.

[11] Guy L. Steele Jr.Common Lisp: The Language. Digital Press, Bedford, Massachusetts, 1984.

[12] University of Wellington, Victoria. ISO 8601 date/time representations.
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html, 2001. Retrieved 13 October
2003 from the World Wide Web.

[13] ANSI. C.

[14] ANSI. C++.

[15] IEEE.

A XML Schema

The XML schema has not been fully formalized and will appear here (in this section) at later point in this documents
development.

45

B Error Codes

The error messages and codes issued by a DAP server are shown in Table 8. They are largely taken from the HTTP
error codes outlined in the HTTP standard. The code and the title MUST be delivered as shown here. Thedescription
MAY be altered if you want to translate it into another language.

Table 8: Error Codes

Code Title Description
400 Bad Request The URL could not be resolved. The host name is

probably incorrect.
401 Unauthorized The resource requested is not available without authen-

tication, and yours has failed.
402 Payment Re-

quired
403 Forbidden
404 Not Found The data file specified in the request is not on the spec-

ified server.
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition

Failed
413 Request Entity

Too Large
414 Request-URI Too

Long
500 Internal Server

Error
501 Not Implemented
502 Bad Gateway
503 Service Unavail-

able
504 Gateway Timeout

C Change log

$Log: dap_objects.tex,v $
Revision 1.64 2003/11/03 03:44:27 jimg
Changes plus parallel additions to the TODO document.

Revision 1.63 2003/11/01 00:42:12 ndp
*** empty log message ***

Revision 1.62 2003/10/30 18:56:54 ndp
*** empty log message ***

Revision 1.61 2003/10/30 02:42:49 ndp
*** empty log message ***

Revision 1.60 2003/10/29 22:58:25 ndp
*** empty log message ***

Revision 1.59 2003/10/29 19:16:24 ndp

46

*** empty log message ***

Revision 1.58 2003/10/29 01:49:50 ndp
*** empty log message ***

Revision 1.57 2003/10/28 01:39:34 ndp
*** empty log message ***

Revision 1.56 2003/10/28 00:54:33 jimg
check point

Revision 1.55 2003/10/27 15:13:08 ndp
*** empty log message ***

Revision 1.54 2003/10/26 19:41:51 ndp
*** empty log message ***

Revision 1.53 2003/10/24 23:51:25 ndp
*** empty log message ***

<<<<<<< dap_objects.tex
=======
Revision 1.52 2003/10/24 23:21:46 jimg
check point

Revision 1.51 2003/10/24 22:17:52 ndp
*** empty log message ***

>>>>>>> 1.52
Revision 1.50 2003/10/24 21:25:20 ndp
*** empty log message ***

Revision 1.49 2003/10/24 20:14:46 ndp
*** empty log message ***

Revision 1.48 2003/10/24 20:04:37 jimg
check point; some minor, annoying, fixes.

Revision 1.47 2003/10/24 18:34:23 jimg
Fixed a misspelled latex command (hosed and ’end description’)

Revision 1.46 2003/10/24 18:29:46 jimg
Added text for the ’information model’ of CE.

Revision 1.45 2003/10/23 23:48:08 ndp
*** empty log message ***

Revision 1.44 2003/10/23 23:43:52 ndp
*** empty log message ***

Revision 1.43 2003/10/22 22:55:39 jimg
I’ve reorganized the Response section (which is still called the Objects
section) so that Version is part of Capabilities. I’ve moved Client Server
Interaction so that it follows the data model and split the CE section into
two parts, one that’s part of the Data model half of the spec and one that’s
part of the XML syntax half. There’s still tons to do...

Revision 1.42 2003/10/22 02:08:23 jimg
check point

47

Revision 1.41 2003/10/21 23:59:17 ndp
*** empty log message ***

Revision 1.40 2003/10/21 23:48:47 ndp
*** empty log message ***

Revision 1.39 2003/10/21 23:30:40 jimg
check point

Revision 1.38 2003/10/21 21:55:00 ndp
*** empty log message ***

Revision 1.37 2003/10/21 20:35:46 ndp
*** empty log message ***

Revision 1.36 2003/10/21 15:24:14 jimg
check point

Revision 1.35 2003/10/17 23:33:52 ndp
*** empty log message ***

Revision 1.34 2003/10/17 00:46:22 ndp
*** empty log message ***

Revision 1.33 2003/10/16 23:56:07 ndp
*** empty log message ***

Revision 1.32 2003/10/16 23:51:45 jimg
Added more detail to the subsection onthe Blob.

Revision 1.31 2003/10/16 21:23:35 ndp
*** empty log message ***

Revision 1.28 2003/10/16 16:45:32 jimg
check point...

Revision 1.27 2003/10/15 23:15:39 jimg
check point

Revision 1.26 2003/10/15 15:26:29 jimg
check point

Revision 1.25 2003/10/15 00:01:03 jimg
check point

Revision 1.24 2003/10/14 22:23:35 jimg
... changes to Section three.

Revision 1.23 2003/10/14 22:21:41 jimg
... the start of some changes to Section three.

Revision 1.22 2003/10/14 00:14:54 jimg
Changes to Sections 1 and 2. I’ve added the atomic types Enumeration, Boolean
and Time. Also, I moved tom’s note about unlimited sizes to the section
about blobs and made it part of the spec. I _think_ I have changed all the
size specifications in Section 2 to say ’the unlimited size thing.’

Revision 1.21 2003/09/23 16:49:38 ndp

48

*** empty log message ***

Revision 1.20 2003/09/18 22:56:06 ndp
Added comments...

Revision 1.19 2003/09/18 15:57:01 jimg
Fixed problems which prevented pdflatex from running. It seems pdflatex is
pickier about latex errors than just plain latex...

Revision 1.18 2003/09/17 22:42:24 jimg
Changes. There are a number of issues which need to be resolved; some are
mentioned in the text as Notes, others are parts of the DAPFourSpec topic on
our TWiKi.

Revision 1.17 2003/07/24 22:32:12 tom
excised dap_services document references

Revision 1.16 2003/07/16 04:06:25 tom
incorporated all known change requests

Revision 1.15 2003/07/16 01:06:08 tom
progress on comments, fixed titles

Revision 1.14 2003/06/10 16:13:53 tom
incorporated suggestions from March meeting

Revision 1.13 2003/06/10 01:00:04 tom
CE syntax fixes

Revision 1.12 2003/06/05 21:00:58 tom
changed CE syntax

Revision 1.11 2003/05/31 01:30:18 tom
fixed constraint expression description in dap_objects to be XML

Revision 1.10 2003/05/28 21:06:50 tom
progress 5/28

Revision 1.9 2003/05/23 21:50:52 tom
progress made

Revision 1.8 2003/05/22 19:37:30 tom
rearranging

Revision 1.7 2003/04/10 16:10:21 tom
modifications at opendap meeting

Revision 1.6 2003/03/19 21:48:06 tom
progress made, ready for the March 03 DODS mtg

Revision 1.5 2003/03/17 17:45:10 tom
progress made. draft for discussion 3/18/03

Revision 1.4 2003/03/13 17:35:15 tom
progress made. not finished

Revision 1.3 2003/03/03 05:34:28 tom
progress entry

49

Revision 1.2 2003/02/28 20:59:32 tom
progress made, 2/28

Revision 1.1 2003/01/14 19:55:31 jimg
Added.

50

